
AD-A096 5567 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC F/B 9/2
THE DEFINITION AND IMPLEMENTATION OF A COMPUTER PROGRAMMING LAN--ETC(U)
AUG 80 A L STEELE N0001-80-C-0505

UNCLASSIFIED Al-TR-595 NL' EmIIIIIIIIIlmhhmhhmhhhnhl
EEIIIIEIIEEEEE
EEEEEIIEEEEEEE
EEIIIEEEEEEIIE
EEEEEEEEIIEIIE

IW-
-T Rr-51 5

THE DEFINITION AND IMPLEMENTATION

OF A COMPUTER PROGRAMMING LANGUAGE

-~ BASED ON CONSTRAINTS*

/0 GY LEIS/STEEL 3

IAug8
- - DTIC

7"document ha. been appnwwd

C3,

LU MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

81~38 046

SEC~nyy UNC LASS IFIED
SEUIYCLASSIFICATION OF THIS PAGE (Meln Data Enee) ____________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS

R.RPRTNMEPRT DOUETTIBPGEFORE COMPLETING FORM
I. RPOR NUSER2. Govt ACCESSION NO. 11. RECIPIENT'S CATALOG NUMBER

AI-TR-595 '~ 5 _ _ _ _ _ _ _

4. TiTLE (and Subtitle) S. TYPE of REPORT & PERIOD COVERED

The Difinition and Implementation of a Technical Report
Computer Programing Language Based on
Constraints 6. PER11FORMING ORG. REPORT NUMBER

7. AUTI4OR(q) 11- CONTRACT OR GRANT NUMUER(.)

Guy Lewis Steele Jr. N00014-80-C-0505

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory ASIOKUI USR

545 Technology Square
Cambridge, Massachusetts 02139

It. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT OATS

Advanced Research Projects AgencyAust18
1400 Wilson Blvd1.NUBROPAE
Arlington, Virginia 22209 372___________

14 MONITORtING _AGENC'r NAME & AOORESS(II difeoaat from C011119111114 Office) It. SECURITY CLASS. (of ti tepon,

Off ice of Naval Research UNCLASSIFIED
Information SystemsI
Arlington, Virginia 22217 O.&,L~E!CTODWNRIN

IS. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document Is unlimited.

17. DISTRIBUTION STATEMENT (of the abstrt en tered in Block "0. If differeil Ones Report)

11S. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on revere& aide it necesary and Identify by bloCk ntrnbe,)

Constraints Programming Languages
Local Propagation Data Flow
Theorem Provers
Automatic deduction

20. A STRACT (Continue on reve,e side It neceecarr and Identify by block n-&ber
he constraint paradigm is a model of computation in which values are deduced

whenever possible, under the limitation that deductions be local in a
certain sense. One may visualize a constraint "program" as a network of
devices connected by wires. Data values may flow along the wires, and
computation is performed by the devices. A device computes using only
locally available information (with a few exceptions), and places newly
derived values on other, locally attached wires. In this way computed values -'
are propagated. An advantage of the constraint paradigm (not unique to it)

DD I 1AN03 1473 EDITION OF INOVSS6IS OBSOLETE UNCLASSIFIED
S/ N 0 102- 014- 6601 SEOCURITY CLASSIFICATION Of THIS PAGE (Whten Date Entered)

Ais that a single relationship can be used in more than one-direction. The connections
to a device are not labelled as inputs and outputs; a device will compute with
whatever values are available, and produce as many new values as it can. General
theorem provers are capable of such behavior, but tend to suffer from combinatorial
explosion; it is not usually useful to derive all the possible consequences of a set
of hypotheses. The constraint paradigm places a certain kind of limitation on the
deduction process. ,

The limitations imposed by the constraint paradigm are not the only one
possible. It is argued, however, that they are restrictive enough to forstall
combinatorial explosion in many interesting computational situations, yet permissive
enough to allow useful computations in practical situations. Moreover, the
paradigm is intuitive; it is easy to visualize the computational effects of these
particular limitations, and the paradigm is a natural way of expressing programs
for certain applications, in particular relationships arising in computer-aided
design.'

<A number of implementations of constraint-based programing languages are
presented. progression of ever more powerful languages is described, complete
implementa ons are presented, and design difficulties and alternatives are
discussed. The goal approached, though not quite reached, is a complete programming
system whic will implicitly support the constraint paradigm to the same extent
that LLSP, y, supports automatic storage management.

S

This report describes research done at the Artificial Intelligence Laboratory

of the Massachusetts Institute of Technology. Support for the Laboratory's
artificial intelligence research is provided in part by the Advance Research

Projects Agency of the Department of Defense under Office of Naval Research

contract NOO014-80-C-0505.

) Guy I.ewis Steele Jr. 1980

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or in part.

.°~ c7.:& I

, I . .:] (7 --- 4 3

D 1r IC 1 11L

IOLA

A Disertaiioit on Research Cotncerning
The Definition and Implementation of
A Computer Programming Language

intenfded as a platfornm on which to erect
Systewns for cOrnputer-Aided [)t.ign of Fngincered Ohjecis

based on
CONSTRAI NTS

A Model for Coilputiation
combining

A Simiple Declarative Semantics
with

A Vis id it Litt e \'iStiili zaton
as a network of4

Siittlanecousl) Active Physical IDe~ices C'omputing in Patallel
Wiihout Pior Prejudice as, to the Direction of the Flow of RItta

using the technique of
Loceal Pro pagat ion

augmntetd by
[)ependecv)-1ircoed Backtracking for Detecting and Resolving Global Inconsistencies

Guy Lewis Steelc Jr.

August 1980

'Iliis report reprodluces a disscrtition stibtitttd on August 8, 1980 to the D epartment or
Electrical Fngicring and Computer Science of dhe Mlassachutts Institute of 'cehnology in par-
tial trlillment of the requiremecnts for the degree of Ioctor of Philosophy.

The l)efinition and Implememation of
A Computer IProgramming Ianguage

Based on Constraints

Guy I.ewis Steele Jr.

Submitted to die I)paitment of Electrical Engineering and Computer Science

on August 8, 1980 in partial fulfillment of the requirements
for the degree of)octor of Philosophy

AISTRAc-r

The constraint paradigm is a model of computation in which values are deduced whenever

possible, tnder the limitation that deductions be local in a certain sense. One may visuali/e a

constraint "'program" as a network of devices connected by A i_2s.)ata values may flow along the

wires, and computation is performied by the devices. A device computes using only locally available

infbrmation (with a few exceptions), and places newly derived %'allies on t/her, locally attached

wires. In this way computed values are propagated.

An advantage of the constraint paradigm (not unique to it) is that a single relationship can

be used in more than one direction. The connections to a device arc not lahelled as inpLts and out-

puts: a device will compute with whateNer %alues are available, and produce as many new values as

it can. General theorem provers are capable of such beha% ior, but tend to SL1fler fron combinatorial

explosion- it is not usually useful to derive all the possible consequences of a set of hypotheses. The

constraint paradigm places a certain kind of limitation on tile deduction process.

The limitations imposed by tie constraint paradigm are not the only one possible. It is

argued, however, that the$ are restrictive enough to forestall combinatorial explosion in many in-

tcresting computational situations, yet permissive enough to allow useful computations in practical

situations. Moreover, the paradigm is intuitive: it is easy to visualize the computational effects of

these particular limitations, and the paradigm is a natural way of expressing programs fir certain

applications, in particular relationships arising in computer-aided design.

A number of implementations of constraint-based programming languages are presented.

A progression of ever more powerful languages is described. complete inplementations are

presented, and design difficulties and alternatives are discussed. The goal approached, though

not quite reached, is a complete programming system which will implicitly support the constraint

paradigm to the same extent that IISP, say, supports attomatic storage management.

Thesis Supervisor: Gerald Jay Sussman

Title: Associate Professor of Electrical Engineering

3

'Ilils work is dedicated to thc greater glory of God Almighty.

Acknowledgements

I would like to acknowledge the contributions to this work of the following people and other

entities, and offer them my profound gratitude:

Gerald Jay Sussman. advisor, colleague, friend, who has prodded me when I was stuck, encouraged

me when I was depressed, enlightened me when I was blind, complimented me was I was actually

working well, and who is generally a jolly fellow to be around: he cares about his students. He

originally inspired nearly all of the good ideas in this dissertation.

Richard Brown, Peter Deutsch, Jon Doyle, Ken Forbus, David McAllester. and Howard Shrobe,

who have worked on various versions or constraint systems or truth maintenance systems at M.I.

and provided many useful comments, criticisms, insights, and ideas relevant to this research.

Other members of die M.I.T. Artificial Intelligence ILaboratory or other M.I.T. laboratories who

have taken an interest in my work and/or generally contributed to the comlortable and intellec-

tually stimulating ambience there: I would like especially to mention Professors Jon Allen, F'd

Fredkin, Carl Hewitt, Berthold Horn, Marvin Minsky, Paul Penfield, and Patrick Winston, and

also Howard Cannon, I)anny I lillis, Jack Holloway, Tom Knight, Neil Mayle, Margaret Minsky,

Jonathan Rees. Chuck Rich, and Jon Taft.

Ibe people who have worked on the hardware and software of the ILisp Machine, to make it

the incredibly efficient and versatile programming environment which enabled this research to be

conducted in a reasonable time: they include Alan Bawden, I loward Cannon, Richard Greenblatl,

Jack Holloway, Tom Knight, Mike McMahon, David Moon, Richard Stallnan, and Daniel

Weinreb.

'Ie Fannie and John Hertz Foundation, which provided (he fellowship under which this research

was done.

• ',5

6 +hA l o vedgcmnefis

Donald E. Knuth, Richard Zippel. myself, and others who created and improved the 'IX text for-

matter, which processed the text of this dissertation: and the people at Xerox PARC who produced

the Alto and its software, used to produce the illustrations, and the)over, which printed the

original hard copies.

The congregation at the First United Presbyterian Church of Quincy, for their fellowship and

Support, including Pastor Roger Kvam, Sandy and Allison Willson, Harry and Mary Long,)avid

and Karen Green. Bob and Laurie Gruel. Bruce and Nancy Rhodes, Wayne Wilson, Alden Drake,

Jennifer Ward, Ruth I ambiase, Hob McCarthy, Ray Cornils, lois Cornils, and many others.

Chuck, the peculiar poodle, who as far as I know still barks in the night.

)avid A. Steele, my brother, who used to keep me up to date on cultural affairs, but now is cultural

affairs (hey, Dave!): and his wife. SuIZanne Messer Steele.

Uncle Henry and Aunt Carolyn l)amm, and cousin Chrissie, and also Cousin Sue Steele: it's nice

to have family.

lhe Reverend Doctor Guy Lewis Steele, Sr., and Nalora Steele, my parents, who have provided

unflagging and unbounded patience, support, encouragement. opportunity, resources, and just

plain love for over twenty-five difficult years. 'liTank you, l)ad: thank you, Mom.

Cordon Ruthven Kerns and Ruth Kerns, my other parents, and also Donald and)avid Kerns, and

David and Patty Kerns Auwerda. and Jimbo Kerns and beyond, who have welcomed me as their

own. It's nice to have family!

Barbara Kerns Steele, my wife. "What we cannot express in words, we must therefore pass over

in silence." (Wittgenstein, Tracetatus l.ogico- Philosophicus, §7). I love you, Barbara.

1

Oh?. prettily preen the primly prose
Thai blvwiis anfidsi the Snunday, snows
And gloom the glibh' gleaming glows
While subtlyi .suppi ng sweet suppose.

-Wall Kell) (1952)
IGo Pogo Contents

Acknowledgemeints. 5

Contents. 7

Figures 12

'rables 14

C7hapter One: Introduction. 19

1. 1. Iltc Constraint Model of Coinlpit tiofl. 21
1.1.1. Siimllc sttcmientof rclaitioniships conistituites dcclariative programmning . . 22

1.1.2. Const ra in ts use local dedutction tech niq ties to compuite solu tions 24
1.1.3. Constraint networks can maintain the history ofa computation. 26
1.1.4. Assumlptionlspr-ovidcd liniitcdinoni-inonotoilic behalvior 28

1.2. 'flie Thesis 29
1.3. Overview of the Il)isscrtation 29

1.3.1. The author had a grand program for solving the entire problem 30
1.3.2. The audior settled lor- doing hialf thoroughly rather than all poorly30

7

8 ('onfenis

Part One: Constraints

Chipter Two: Propagation. 37

2.1. A Tlri % al Constrai nt L anguage. 37
2.2. Imnplementat ion of a 'lri% ial Constraint L~anguage 42

2.2.1. Cells are uscd to represent variables 42

2.2.2. Constraints are instances of constral nt-typcs 48
2.2.3. Flquatng of cells links them and propagates values 49

2.2.4. Constiriints arc implemented as sets of rules 52
2.3. Sample E~xectition ofa Conistr-aint Progr-am 57
2.4. A lDilliculty with D~ivision 62
2.5. Summary of the Irivial Constraint Languagc. 66

Chapter ~lirec: D~ependencies 68

3.1. Responsible Programs 69

3.1.1. D~ependency information can bc uscd to explain computations. 69
3.1.2. Required parameters can be deduced from the network structure 72

3.2. Recording Decpendencies 74
3.3. Producing Explanations. 82
3.4. Representing Symbolic Results in thc Network. 89

3.4.1. Subgraphs of the network may be printcd as algebraic cxpressions 89
3.4.2. Choosing a SUbgraph is guided by dependencics and bctter-name heuristics 96

3.5. Summitry of Some Uses for Dependencies 102

Chapter Four: Retraction. 104

4.1. Forgiving Systems 104

4.1.1. Conniectinigconiflictinigcllscan cauise contradictionis.. 105
4.1.2. Propagation potentially poses problems for predefined pins. Ill

4.1.3. Frroneous eqtiatings elicit execution exceptions equally easily. 116
4.2. Implementation of Retraction Mechanisms. 121

4.3. Summatry Of the Retraction Mechanisms. 132

Chapter Five: Assumptions 133

5.1. I)efinition of Assumnption Constructs 134

5.2. Implementation Problems. 135
5.2.1. Nogood sets can be used to locally record contradictions. 135

Cotents 9

5.2.2. Resolution can derive ncw nogood sets from old ones 137

5.3. ImplementationofAssumption Mechanisms 141

5.4. Examplcs of the Use of Assumptions 157

5.4.1. Simple assumptions are persistent 157

5.4.2. Oneofassumptions can express and solve the four queens problem . 162

5.5.)iscussion of the Assumption and Nogood Set Mechanisms 174

Part Two: Engineering

(hapter Six: Efficiency 181

6.1. TIhe New Improved Ianguage 183
6.2. The New Improved 'echniques 186

6.2.1. Cells explicitly record multiple support and equatings 186
6.2.2. Constraints use arrays indexed by pin number 192

6.2.3. Constants are considered an immutable part of the wiring 196

6.2.4. A queue-based control structure aids efficiency heuristics 196
6.2.5. Generalized algebraic notation can express any network 197

6.2.6. The size of nogood sets can be heuristically reduced 198

6.2.7. Statistics counters measure performance 200

6.3. The New Improved Implementation 201
6.3.1. Symbolic constants provide names for internal marker values201

6.3.2. Statistics counters make it easy to instrument code 203

6.3.3. Rules are data structures and catalogued in arrays 204
6.3.4. Cells have fields that were formerly in repositories 207

6.3.5. The value of a cell may differ from the value of its node 210

6.3.6. A newly generated cell is its own puppet 211
6.3.7. lash tables store and retrieve objects indexed by given keys212

6.3.8. Constant, default, and parameter cells have dummy rules215
6.3.9. Declaration of variables and constraints may require housekeeping . . . 217

6.3.10. A queue is yet another abstract data structure 219

6.3.11. The task scheduler simply scans the queues in order 223

6.3.12. The priority of a nMle depends on its properties 224

6.3.13. Rule definitions explicitly specify output pins 225
6.3.14. The triggers of a rule must have values when it is run 227

6.3.15. Installing a value in a pin changes the pin's cell-state 228

6.3.16. Usurping a supplier simply reverses links from usurper to supplier . . . 232

6.3.17. Signalling a contradiction merely queues a contradiction task234

10 ('on ens

6.3.18. Contradictions must still hold at the time of processing 236

6.3.19. Computation of premises also determines summarizations of defaults . . 238

6.3.20. Contradiction processing traces premises and chooses a culprit242

6.3.21. Awakening selects only relevant rules for qucuing 246

6.3.22. Forgetting a cell's value lets friends (or rebels) step in 248

6.3.23. The l ook up functions scans ie constraint-types's v a rs array253

6.3.24. Fquatings are recorded explicitly and initialize links 255

6.3.25. Node disconnections can be done b) dissolving and reconnecting . . 260

6.3.26. Destroying a variable or constraint detaches it from everything 265

6.3.27. Primitive constraints are uniformly defined by defprim 268

6.3.28. Checking the nogoKd sets can advise rules about forbidden values . . . 276

6.3.29. The why function prints values forbidden by nogood sets 279

6.3.30. The why-ultimately function printscell-link information 282

6.3.31. The what function uses the generalized algebraic form 284

6.4. 'lhe New Improved Example 289

6.5. The New Improved Summary 296

Cliapter Seven: Correctness 297

7.1. The Structre of Nodes 297

7.2. Constraint-types and Constraints 299

7.3. Rules 300

7.4. Tasks and Queues 302

7.5. Nogood Sets 303

7.6. User Interface 304

7.7. Summary 304

Part Three: Abstraction

Chapter Eight: I lierarchy 309

8.1. New Features for the Constraint I.anguage 309

8.1.1. The user can describe networks using tie expression syntax 310

8.1.2. '[hc user can define non-primitive constraints 311

8.1.3. Pathnames may be written is abbreviated form 313

8.1.4. The vector construct provides limited iteration 313

8.2. Implementation of Parsing and Macros 316

8.2.1. Macro-constraints are instances of macro-constraint-types 316

8.2.2. Owners can now be constraints or macro-constraints 320

Cont',ils I 1

8.2.3. Macro-constraints can be created and destroyed 321
8.2.4. The t he construct can refer to parts of a macro-device 324

8.2.5. A "read-eval-print" loop processes user requests 325
8.2.6. User input foions are divided into three categories 327
8.2.7. I)efining a macro generates a macro-constraint-type 327
8.2.8. Statements are reduced to simple statements 330
8.2.9. I'athnamnes with periods are one of many fornis of reference 334

8.2.10. Vectors are easily defined in terms of macros 336

8.3. Fxample ofthe Use of Macro-Constraints 337

8.4. Disciussion of the Macro L.anguage 341

Chalpter Nine: Compilation 344

Chapter Ten: Conclusions 346

10.1. Comparisons with Other Work 347

10.1.1. sketchpad relaxed constraints on geometric diagrams 347
10.1.2. Data flow computations use parallel directional devices 347

10.1.3. Walt/'s algorithm filters scene labels by local propagation 348
10.1.4. Semantic networks propagate symbolic tags 349
10.1.5. Ireuder's method propagates by synthesi/ing higher-orderconstraints 349
10.1.6. prolog uses chronological backtracking on hrn clauses 350
10.1.7. th i ng lab provides a class hierarchy and uses i)athaies.. 352

10.1.8. el and ars analyze electrical circuits by local propgation 353

10.1.9. Truth maintenance systems are general dependency managers 353
10.1.10. A simple constraint language was designed two years before this 355

10.1.11. Other work using constraints 356
10.2. Present and Future Work 357

10.2.1. 'ables can be done "the obvious way" or by "algebra... 357

10.2.2. Recursive constraint definitions require conditional expansion 359

10.2.3. Ixplanations should take advantage of the macro-call hierarchy 359
10.2.4. A constraint language should be meta-circular 360

10.2.5. Algebra is operating on Ohc network structure 361

10.2.6. '['he system may need control advice from the user 361

10.2.7. Techniques are needed for run-time storage reclamation 362

10.3. Contributions ofThis Research 363

References 365

In vabo tererotianf:
Brogow wisnt inacrese u/i.

-L ewis Carroll
"*tabmocchia-

Aiicper .Speculon Trunsiiss Figures
Tranislati~on b) Cim: l-Iarcurl Carruthers (1966)

FiGuRj: 2-I1. Primitive Constraint Devices onl Integers 39
1:IGURiEi 2-2. A Constraint Network for Conlverting I'cirpcratu res 40
FiGuw- 2-3. Coil]putat ion of a Uinpcrattnre Conversion 41
FHGUIZl- 2-4. Somec Organizations for Imnplementing Cells. 42
1-iGURE 2-5. Threc Equivalent Cells with Value Five. 44
Ficouiw 2-6. The Result of the Creating a Pin for an Adder 47
Fic;URi., 2-7. The adder Constraint-Type and an Instance. 50
FiGURI; 2-8. Operation of the max e r Constraint. 61
FiGURi- 2-9. A 'Iemperature1- Con% ersion Which "Failed"... 63
FiGURE, 2-10. Constraining 'Iliree Points to he Equally Spaced (i). 64

l-kURt: 2-11. Constraining 'lhree Points (o he Equally Spaced (ii) 65
FiGURE, 2-12. A Redundant Network for Equally Spicing'Ibree Points. 65
FIGURE, 2-13. A Cycle-Free Network for E:qually Spacing Ihrec Points. 66

FIGURE. 3-1. Multiple Suppliers in the Equal-Spacing Network 74
Fic;URE 3-2. A IDependency Structure for Which preini ses lakes Exponential 'ime 84
FIGURE 3-3. Constraining F-our Points to he Equally Spaced. 92
FiGURE.- 3-4. Computing Eqjual Spacing for F'our Points. 93

FIGUR 1 4- 1. Computation of aTemperature Con version, Using a lault Value. 106
FiGLRi; 4-2. Recomputation ota lemperatuire Conversion 108
FIGUR: 4-3. Another Rccornputation of a 'Ierperature Conversion 109
FiGURi: 4-4. A Contradiction in a Four-Point Spacing Network. 112

FIG UR u 4-5S. IDefeating Iwo D~efaults in a lour-Point. Spacing Network. 113
IGURi: 4-6. Redundant P~reinises for a Four-Voint Spacing Network. 114

FIGURE. 4-7. Surviving Iwo Contradictions a Four-Point Spacing Network. 116

12

I' ' . -4

Figures 13

FIGUR. 4-8. A Partially Dissolved Four-Point Spacing Network 117
FIGURE 4-9. Computation in a Partially)issolved Spacing Network 118

FIGUR- 4-10. A Four-Point Spacing Network Modificd by Reconnection 119

FIGURiE 4-11. A Usefully Modificd Four-Point Spacing Network 120

FIGUR 4-12. A Usefully Modified Four-Point Spacing Network 121

FmGURI (5-1. A Temperature Conversion Network with an Assumption 135

FIGUR" 5-2. A Temperature Conversion Network, aftcr Retracting an Assumption 135

FIGURE 5-3. A oneof Cell for which No Alternative Works 138

FjGURE 5-4. Assuming Zero I)oes Not Work 138

FIGURI 5-5. Assuming One Does Not Work 139

FIGURI: 5-6. Assuming Two Does Not Work 139
FIGURF 5-7. Causing a Contradiction and Retraction Eventually Works 140

FIGuR- 5-8. Situations Examined for Four Qucns Using Chronological Backtracking ... 165

FIGURE 5-9. Constraint Network for the Four Queens Problem 168

FIGURi- 5-10. Situations Examined for Four Queens Using Non-chronological Backtracking 170

FIGURE 5-11. Constraint Network for Making a General Choice 178

FIGURI 6-1. Data Structure for a Node with No Value188

FIGURI" 6-2. Data Structure for a Node with a Confirmed Value 189

FIGURE 6-3. Data Structure for a Node in a Contradictory State 190

FIGURE 6-4. The Constraint-type gate and Its Rules 194

FIGURF 6-5. Summarizing Default Cells in the Network 199
FIGURE 6-6. Usurping a Supplier 231

FIGURE 8-1. User)efinition of the if Device 312
FIGURE 8-2. Pictorial Representation of the Body Prototype for a Vector 314

FIGURI 8-3. An Entire Vector, and Its Connections 315

FIGuRE 8-4. One Stage of a GCD Computation 338

I-

The Moon is a Madness
A ,Madnss of mine.
I made her of mus ard
And mulberry wine.

I garbed her in silver
And strawberry cheese h,,, ;nTables
And halred her in qjuarler abe
(Her quaritrs do please.)

I crowned her and gowned her
In Love all ashine.
So boot her and shool her
This Alahucx. of mine.

-Walt Kelly (1959)
The Pogo Sundkt Bnmch

T,\IE 2-1. iSi Code)efining Cell and Repository Data Types 45

lAIH, 2-2. Creation of Cells, Constants, and Variables 47

T"IIij[2-3. Constraints and Comstraint-'l'ypes 49

T''AnII 2-4. Referring to Pins of a Constraint Device 49

TABLI," 2-5. Equating olCclls and Propagation of Values 51

TAI.i. 2-6. A Simple Tracing Mechanism52

'TABL 2-7. Implementation of the Constraint Boxes of Figure 2-1 53

lBLE 2-8.)cfinition of Primitive Constraints and Rules 55

FAlII.I- 2-10. Expanded Second Rule of the equal i ty Constraint 55

'I'Am.. 2-9. Expanded Definition of the equal ity Constraint 56

"l'Aml.lE 2-11. ImpIlementation of cont rad ict i on and se tc 57

lABli- 3-1. Extra Repository Fields for Recording l)cpcndcncies 75

'rAmIi- 3-2. A Constant Cell Is Its Own Supplier 76

'fAinI" 3-3. Maintaining Supplier Components When Equating Cells 77

'IAml-i. 3-4. An Incorrect Implementation of Equating 78

TA1IF. 3-5. Inplementation of Primitive Constraints with I)cpendency Information79

'IAiL: 3-6. l)cfinition ofdefpr im Which Saves Rule Inlormation 80

lAIII 3-7. I)efinition ofthe Ancestor Relationship between Cells with Values 81

TABIl. 3-8. I)cfinition of setc fbr I landling IM)pendcncies 82

IABLF 3-9. Code for why: Generating a One-Step Explanation 83

lABHl; 3-10. Calculation of the Premiscs Supporting a Value 84

'AInL, i 3-11. Fast Calcul.cion of Premises 85

IArLF, 3-12.)eternining Potcntial Premiscs fora Cell with No Value 86

TAIII, 3-13. Implementaion ofwhy-ul t imately 87

14

E. Jm*-

Tables 15

'Fmi v 3-14. Decfinition~ of de wh at Explanation Function 95
,rAmI 1: 3-15. The tree-form Function and Micros for Numerical Marks.
IAIII 1 3-16. Tracing Out at Subgraph of Interest for what 98
lAmI 1: 3-17. Copying a Traced Suibgraph ats at Set of Fquations 100
1AmI 1: 3-18. Resetting tie Mark Components for t ree -f orm 102

TA II 1: 4-1. Implementation of Constant and Decfault Cells 122
[A III 1:4-2. lDclaying 1:quating Ikecisions Uninl after the Merge. 123

T. I :4- 3. I landling Contradictions in se tc. 124
TAi II : 4-4. Processing and Recovering fromt Contradictions. 125

Tik : 4-5. Retracting Values from the Network. 127
'IAIII 1: 4-6. A Rewriting of the premi ses Function 127
'FAIIt: 4-7. A Rewriting of the f a st -prem ise s Function. 129
TAl1t. 1 4- 8. Dissolving a Node-Carefuilly' 130
TA III E:4-9. Disconnecting a Cell from a Node. 131

rAIFI 5- 1. D~ata Structure Modifications for Assumptions 142
'lAmI 1: 5-2. Implementation of the assume Construct. 143
lIAmEi 5-3. Implementation of the oneof Construct 144

TrAIIn1 5-4. The Rule for oneof 145
TABI 1: 5-5. Look ing for fentative Values for Use as Culprits. 146
TAII11: 5-6. Constructi ng and Recording a Nogood Set. 147
'FAmEi. 5-7. Merging Nogood Sets When Equating Cells. 148
lARIn 5-8. Altering Nogood Sets fom. a New Repository 149
lIAmEi 5-9. Merging Iwo Collections of Nogood Sets 150
I'AIIE 5- 10. Forgotten Values May Rec-enable Suppressed Assumptions 151

'lAmEH 5- 11. D~isconnections Wreak I lavoc with Nogood Sets. 152
TAi 5-12. Rapid D~estruction of Potentially Invalid Nogood Information 153
TARIT 5-13. Assumptions Are Considered to be Premises 153
TlAmI: 5-14. New treef orms Definitions. 154
TmiE 5-16. Constructi ng a Treeform with a I. 154
TrAIII 1: 5-15. Tracing M issing Treefornis and Ireeforms with I 155
'F'Ainwi: 5-17. A More Reliable Version of process -setc. 156
lAfIII1 5-18. A I Isip Solution to the N Queens Problem. 162

TIAnmI: 5-19. Constraints for the I"Our Queens Problem (i) 166
TAIIul: 5-20. Constrainits for the Four Queens Problem (ii). 166
'IAIII i. 5-21. Constraints fru the Four Quecens Problem (iii). 167
Tmu i: 5-22. Constraints for the Four Queens P~roblem (iv). 167
TAIIIJ 5-23. Implementation of the f i rs toneof Construct. 175

16 Tables

lAIIH 5-24. The Rule for f i rs toneof.... 177

TA 1H.t 6- 1. Decfinitions of Symbolic Constants. 201
'Tmwi: 6-2. Statistics Counter Mechanism 203
TAW t:6-3. D~ata Struct~ures for Constraint-types, Constraints, and Rules. 204
TAm1 1. 6-4. Data Structures for Repositories and Cells. 206r
lAmI v 6-5. Functions for Accessing Values of Cells and Nodes 209

TABI v 6-6. Generation of Repositories and Cells. 211

l~iwj: 6-7. 1 lash labic Decfinition and Generation. 212

T~~. 6-8. 1 lash [able L ook up and I nstall Operations. 213
['Iim.i: 6-9. D~UMMY Rules for Constant, D~efault, and Paramecter Cells 2154
[T~ii 1: 6- 10. Generation of Constant, D~efault, and Parameter Cells. 216
lAmI 1: 6-11. D~eclaration of Variables and Constraints 217
'fwmu 6-12. Queue D~ata Structure and D~efinition. 219
'Fmi;6-13. Queue Operations .I. 220

lAm IT 6-14. Constraint System Queue D~efinitions and 'ask Schecduler 222
TABH: 6-15. D~eciding in Which Queue to Frnqueue a Ride. 224

1m.I,6-16. Applying it Rule to a Constraint 226
'FAIIIU 6-17. 1Installing it Computed Value in a Pin (i) 228
T&Bt~ v. 6- 18. Installing a Computed Value in a Pin (fi). 229
I'AIIIE 6-19. Usurping the 'I'rone of the Stupplier of a Node. 231
TABmI v6-20. Signalling Contradictions. 233
TABI 1. 6-21. Running a Contradiction Task. 235

TMr6-22. Fa~st Computaioni of Premises and Rclated Quantities. 237

IMBiU 6-23. Gathering Premise and Link Information 239
l,~m v 6-24. TIracing Premises for at List of Cells, and Unmarking 241

IAIII . 6-25. Processing oIContradictions 242
lAt B1 6-26. Formation and Installation of Nogood Sets. 243

IAm+,l 6-27. Choosing a Culprit. 243

lAtH v 6-28. Awakening of Rtules 245

'lAI.i., 6-29. Forgetting a Cell's Value and It-, Consequences. 247
'lABtuv 6-30. Retracting a Value, and [racing of Consequences 249
TAm BH 6- 11. F-orgetting at Friendless King (Very H-airy!). 251
TA iwi 6- 32. Referring to Pins Using the. 253

'lAW1 1; 6-33. Equating of Cells and Recording Equatings Explicitly. 254

lAII 6-34. Merging Valuef and Arranging Cell ILinks. 256

TAkIt; 6-35. Merging 'wo Nodes with Values and I landling Conflicts. 257

TAIIm. v6- 36. Altering and Merging of Nogood Sets 258

Tab/es 17

TAlIt 1: 6-37. T'esting Ancestorhood 259
TAm-i: 6-38. lDissolving a Node. 260
TAii. 6-39. D~etaching. IDisconnctring, anid Discquating Cells 262
IAIIH.L 6-40. Fast Expunging of Nogood Information 264
rA~ttII 6-41. Decstroyinug the Value of a Global Narnc.. 265
TAi II 1 6-42. lDcfinition of IVrimitive Constraint-types (i) 266
rAIII 1. 6-43. D~efinition of IVtinuikc Constraint-types (ii) 267r
lABI 1: 6-44. Decfinition of Primnitive Constraint-types (iii). 268

" B :6-45. Thie assume. oneof, and f i rstoneof Constructs. 270
FAiIu1 6-46. D~efinition of Primitives. 272
lAmI i; 6-47. Expansion of the D~efinition of gate 273
FrABH: 6-48. Decfinition of Rules 274
lAmII: 6-49. Expansions of the Ileinitions of Iwo gate Rules. 275
lAmPH 6-50. Check ing Whether a Value is I orbidden by a Nogood Set 276
lABm 1; 6-51. Filtering a Set of Possibilities Using Nogood Sets 278
FTmB.r 6-52. Imiplementation of the why Function 279
kmIIi 6-53. Fxplaininig a [rueL-Sulpplier, and Printing Forbidden Values. 280
I,\m 1: 6-54. Implementation of why-ul t imately 282

TAmE: 6-55. Locating lDesired Premises for an Unbound Cell 283
lAmI 1: 6-56. Inmplementation of what 284
l'Am. 6-57. Tracing Out ain Algebraic Fxpression in the Network. 285
TII., 6-58. Determining at "Good" Artificial Supplier. 286
lAIin 6-59. Constructing the [raced-out Algebraic Expression. 287

]'AInIl: 6-60. Checking for a Good Global Name, and Unmnarking. for tree-farm 288

TAm It1 8- 1. Macro-constraint-types and Macro-constraints 316
'['Am+, 8-2. New Printing Formnat for Cells 318
lAmPH. 8-3. Construction of Pathnarnes for Cells and TDevices 319
lAmPH 8-4. [he Best Namnr for it Pin Is Its 1Pathniamei.. 319
[AmI P. 8-5. Creating and I estroying 'liings;.. 321
lAmLI 8-6. Generating a Constraint or Macro-constraint. 323

TABLEI 8-7. ILook ing Up Parts ofa Macro-Constraint 324

lAiII1 8-8. [he lop-I evel "Read-Fval-Print" ILoop for tie Constraint Systemn. 325
lAmI 1: 8-9. D~iscrimina~tion of Input Fornms 327
lAB! 1: 8-10. Processing at Macro D~efinition. 328

lAmI 1; 8-li. Generating a Macro-Constraint-Type 329

TA I: 8-12. Parsing Statements. 330

lA RIF 8-13. Parsing an "Algebraic Expression".. 332

18 Tables

'rABLE 8-14. Parsing a Rcfcrcncc to a Th ing. 334
rmi 8-15. Parsing a Pathnamc Written with Periods. 334
TABLE 8-16. Parsing a "Simple" (Ha!) Symbol 335
l',ii 1. 8-17. Parsing a Global Symbol. 336
TABLE 8-18. Parsing it the Ficprcssion. 336
T'AB! 1. 8-19. Parsing a ve cto r Stawcment. 337

Oh. roar a roar for Nora,
Nora Alice in the night.
For she has seen Aurora
Bortulis burning bright

A furore for our Nora!
And applaud Aurora sen!
Where. throughout the sunier. has Chapter One
Our Borealis been?

-Wall Kelly (1953)
7en Erer-Lo'in" Blue-ryed Years with Pogo Introduction

t r is BY NOW a firmly established piece of the computer science folklore that all sufficiently
powerfil models of computation are the same because they are all equivalent to a Turing

Machine (this is known as Church's thesis). Nevertheless, some models of computation are more
tractable than others for certain purposes. and this is perhaps as much a matter of psychology as
of computer science. Some models evoke mental images and analogies which others do not, and
these images and analogies guide one's thinking about a problem. Indeed, some models become
so firmly entrenched in the folklore, or seem to correspond so naturally to the strncture of certain
classes of problems, that one's instinctive approach when faced with similar problems is to turn to
those models, and so such models become paradigm solutions for such problems. For example, the
notion of a finite-state machine is so closely associatcd with the parsing of strings that whenever
a problem of the form, "Scan a stream of things looking for some cumulative property" arises,
my first thought is to frame the solution as a finite-state machine- therefore I assume that the
solution may be of this form, and then try to fill in the details, and usually this approach works and
occasionally not.

Robert Floyd has remarked [Floyd 19791:

... continucd aivance in programming will r'quirc the continuing invcnion, elaboration.

and comnmunicalions of new paradignis.

'Ibis dissertation is an expo:ition of one such paradigm: constraints. In this paradigm programs
consist of statements of relationships among symbolically named quantities which are to be
satisfied. What distinguishes a constraint-based language from others is the particular limitations

19

" -I !. . . . +

20 CAPIR ONFE IN I ROI)UCI1ON

which are placed on the deductisc prtcss which manipulates the relationships in order to produce

values.

In the citcd%%ork H-oyd goes on to say:
When a programmning lanyu~ewc maks a paramdigm uixirnmiciit. I %ill say the language

3mlppufls the paradigmn. Whu ii alanguage make, ii paradigin feasible. but mAj convenient.

I %ill sa the iangtiuqc vnei.h- snpjhrP, the paradigm . nxost of our langitgve only

wealh support mimuilancipus ;isagnnlcnit. and du not support moroutin 31 all .. ven

the patradigiii of strutiured p(r(Jgianmnng i% ait best wcaikl% s.upported b) many of our

programmiing languages.

lcconstraint model of computation is not supportcd by any programming language in existence

loda): the closest approximtation is probably P'tOl M, [Warren 1977b]. ie research I shall discuss
here is an attempt to build a constraint-hascd language front the ground tip. TIhis includes

definiition of appropriate primiti'.es. meanis of combining primitive%, run-time support, means of

abstraction. and at simple compiler.

Again quoting from lloyd:
A paradigm at an esen higher lecit~ of abstitin than the strucitired progranmming

paradigm is the construction of a hicrairch) oft liwugge where prorams in the highest-

level lain.giagc operate on tuec 111(r15 abstract objects. and are translated into programs on

the next lower level language.

TIhis is the paradigm used in the construction of the constraint system presented here. Ic was built

on top of a liSP system, the dialect knownitas Lisp Miachine i isi' lWeinreb 1979], developed at
M.l.l. In this dissertation I will not only decrLiibe the capabilities of the constraint system, but also

describe its implementation, making remarks along the way on the techniques used to build large
systems quickly and reliably. lhesc techniques include data abstraction, debugging tools, defensive

programming, and most partictila, ly btuilding on ani existing systemn rather thant re-implementing

everything from scratch. liSp1 provides the user with at data structure printer, a parser, hashing
or identifiers to data structures. atitomatic storage management. and a host of run-time facilities

(arithnmetic, search procedures. sorting. etc.) right off the bat: tlie incremental cost of constructing a

new language is small.

In sumimary. I will discuss three things in a somewhat mingled fashion:

(1) '1 he constraint model of compitation, and some associated imiagery. Thiis will include a staltic

relat ional mo del fo r the meanin g of constriain ts. as well as c oflpt i t ional nmodels.

(2) Methods of imiplementation. inicluuding consider-ation of alternatives. Possible data structures

and control structuresmae complared.

(3) Techniques for construction of large s~ stems. using the constraint system as ani examnple. This

Point receives somewhat less emlphasis in the text, and is represented largely by side remarks

and footnotes, and dlemotnstrated by exanmple.

§ 1.1 7"h' (hcnsiraint Alodel of('omputalion 21

1.1. The Constraint Model of Computation

There are two images, or analogies, which I associate with constraints which make them useful
to me. Neither of these is unique to constraints, but fhe combination is.

The first image is that ,i constraint is a declarative .stacincni of relaionvlhip. If I place a

constraint that the quantity named a is less than the quantity named b. thell there is a known

relationship between the two. Siniilal)', if tile sui of three ,alucs x. y. and z is constrained to be

zero. then there is a stated relationshi) among the three. 'I his relaLionship can be %iv ed in more

than one way: for example, one might find conmenicnt for some)urposes the as imetric view that
x is minus the sun of the other two.

Predicate calculus and related description methods also model computation by stating

relationships. Predicate-calculus-bIased programs such as I1 Oi ([Waric-n 1977h1: see also

(uKowalski 19741) pro% ide both a relational model for interprelaion of the meaning of the program,

and a computational model for tie algorithiic evolution of tile callnonical fori for tilis Meaning

(tile "output").

The second image is that a constraint is a comniptcional devicefor enlfrc'ing ihe rhillionhip. I

mean for ihe word "device" to be taken quite lilerally. I visualize a comisrain as a little plaslic box

with metal pins coming out, just like the dual-in-line (DIP) packages that digital integrated circuits

come in. Just as a 7400 series NANI) gate will force its output pin to be the logical negation of the

logical product of its input pins, so a hypothetical 74000000 seiles NA, ND) constrailit would constrain

its three pins to obey the NANI) relationship. A constraint does not hai\e designated "inputs"

and "outputs", however. At this level of abstraction I say nothing about how the relationship is

enforced, except to say that the enforcement nechansismns are (mostly) local to the de% ice. I then

visualizc inany of these little boxes being combined by running wires between their pins; these

wires represent primitive equality relationships. A constraint prograln can be drawn very much like

an electrical circuit diagrm, (Indeed, it was research into analsis of electricil circuits that inspired

tie current Ilurry of interest in constraints at M.I l.[Sussmian 19751 ISt,illnin 19771: and constraints

in Sketchpad [Sutherland 19631 were also drawn as little "devices" connected by "wires" to their

argulnents.) As in an electrical circuit, all the devices are conceptually active at once: they operate

in parallel.

It is this computational metaphor that distingtlishes constraints from, say, 1,ROI 0(3. Both

IwI OG and constraints are based oil a sLile ent of relationships. but Ihey difrer in the additional

imagery. PROl.06 restricts sittements to I lorn-clause form, and then likens such clauses to proce-

dure declaratiolc mid imposes a backtracking procedure-calling metaphor. Constraints provide the

metaphor of interacting discrete physical devices. Other metaphors may also be useful.

22 CllAPIFR ONF. I.N I tmm (lION

T[he data flow model Of computation [I~cnnis 19731 [Decnnis 19751 also takes a \jew of pro-

gramiming ats (he wiring togcthcr of devices which can then per-form computations w ith ats much

parallelism is permitted by the % iring structure. Constraints are like data flow in that one can

visualize data a-, flowing fromt device to device along wires. [he two diff'er in that data flow devices

arc directional, has ng spccified input pins and output pins, constraints are (in general) adircc-

tional. D~ata flow can be considered to be a (perhaps \,cry important) sp~ecial case of tie constaint

paradigm.

Analog computers also perform computations using devices which are wired together. 'They
opertte on at (conceptually) continuous domain, however, represented by voltages or Currents. I
ftittS here- on constraints as a model of disci-eie computation, on dicontintIOuls data domains.

When discrete methods must be used rather than, say, relaxation techniques. the comiputational

strategies are radically different.

I.I.I. Simiple St~tteitent or Rclatio~slmips Conistitutes l)ecl-tritivePrograimniiing

TIhe advantage of a relational semantics for at programming language is that a static meaning

can lbe assigned to the program independent of any computational model. '[his allows various im-

plementations to be judged by a unifonn standard, and at new implementation need not reproduce

exactly tie inessential quirks of an old one. Moreover, the programn may well be easier to under-

stand. and even (it is ftslionable to say this nowadays) to prove.I

It has been argued [Pratt 19771 [Kowalski 1979] [Clark 1980?] tiiat a program is best divided

into two components, thle corpnjec and porfoimance components (Pratt's terminology, bor-

rowed fromn Chomnsky). 'The competence component contains factual in form-iationi--staitemencits of

relationships-which must be manipulated and corrmbined to calculate tine desired result. 'llie

performance component then deals with the strategy and tactics Of the Iman fipUlations and combina-

tions. T[he competence component is responsible for tie correctness of' the program-, the perfor-

mance comtponent is responisible for efficiency and termination. As an example, the following facts

suffice for computation of the greatest common devisor r of two numbers x and y (the example is

from Pratt, but the formulation is mine) 2:

I. Note also that it is easier to start with a good semantics and then imrplenientl it than to begin with an iniplceiitatioin
and thin deive (if onie can!) sonic k ad of post hoc semlant ics (I picaI ly of the I Iimd - Iloa c StN Ic) to justify it.

2 Ibis formulationi does not consist simpty of univeoallf qmanified rclationships ah)out gid alone with a request
to find gc'i(x'. !/): such is the naiture of the fornit;lion in [Pratt 1971II. l'his tbinuilatioui is somiewthere between
that and a detcimi nistic atgoniitti. in that it ex presses the idea that a sequence shild he c'omiputed, that elements
of the sequence mnas hc comiputed according it) a limited numbher of spccified riles, and that soni celemient of the
sequence witt he the rcsutt. mbuts compared with Pratt1's %ersion. this already ouitlinies mutch of the strategy.ib
freedom remvaining is the precise choice of rules used to compute the sequenoe.

§ 1.1.1 The Consiraint Model of Computation 23

2k0) X ZI = V
>j 2 (Zi =Zi-I -Z. -2) V(Zi = zi-2 -- 1_)

r = jzj.1 whcrezi+1 = 0

(Proof of formulation. using induction: certainly gcd(zt,zj) -- gcd(x, y). Now suppose that
gcd(zt-i,z,._2) = gcd(z, y). Either zi = zi-, - zi-. 2 or zi = zi- 2 - zi--i. In the first
case gcd(zj, zil) = gcd(ziI - zi- 2, zi-) gcd(z. -, z-2) = gcd(x, y). and the other

case is similar. Tlhcreforc for all i, gcd(zi, zi- 1) = gcd(x, y). Negative numbers do not matter,

because we define gcd(-u, v) = gcd(u, v). Moreover. the fact that gcd(u, 0) = u means that

r = gcd(x, y).)

Now this set of rules is certainly competent: if a value is ever found Ibr r, it will certainly be
the gcd of x and y. Moreover, the declarative nature of the uIles makes it easy to reason about

them. However, the matter of performance is another thing. A strategy is needed for making the
choice at each step about which way to subtract. For x = 15 and y = 12, one valid z sequence is

15, 12, 3, 9, 6, 3, 3, 0

whereupon r = 3. But another valid sequence is

15, 12,- 3, 9, 12, 3, 9, 6, -3, 9, 6, 3, 3, 0, -3, 3, 6, 3, 3, 0

whereupon r = 3 (the rules don't say one must use the first zero value in the z sequence!). The

computation may even fail to converge:

15, 12, -3,15, 18, -3, 21, 24, -3, 27, 30, -3, 33, 36, -3, 39,..

'he behavior of the performance component cannot simply be left to chance, it can have a

significant effect on the computational behavior of the system. (In some sense the only interesting
difference between an n log n Quicksort and an n2 Bubble Sort is performance.)

We will posit the hypothesis that we would like, in our programming, to concern ourselves
first with competence (correctness: "what"), and only then. if at all, worry about performance

(efficiency; "how"). 'Ihis implies that a programming language ought to allow the division of a

program into the two separate components. Ideally, the computation could proceed, at some cost

perhaps, without any advice on performance: but the more advice the programmer could give, the

more efficient the computation could proceed. (Compare this with the declaration of data types in

existing programming languages. In most of the algebraic 3 languages the declaration of data types

is inextricably bound up with the rest of the program, even though the in rmation is in many cases

3. It used to he that "algebraic" meant "A .GOI.-like" or perhaps -FOR]RAN-ike", but nowadays it seems to mcan
"PASCAI.-like-. for PASCAl. is the currently popular, though poorer. rc-invcnlion of the excellent ALGOL. wheel.
Perhaps in another year, continuing the trend, thc tcrm will mean "AI)A-like".

24 CI IAP ITR ONE~ I\ I i4)IctII ION,

redundant. Tlo my mind that is oniC of the great advantages of interactive L1igcs SuICh ;IS BASIC,

API , and I isi): the programnmer can proceed %%ithout all diC redundant baggage to the heart of the
inatter, and then go back later to add tie declarations as documrcntation or ads ice. In MACI ISP

[Moon 1974 for example, one often writes a prograin without any declarations, and then adds
numerical declarations latter to advise thc comnpiler how to go about gctting FORlIRA Vlikc speed

for numerical code IFatcmian 19731 [Steele 19771. This is not to say that the programmier should

not have thle possibility of declarations in mnind as he first writes the programn. I woIuld suggest.
however. that programns written to try out an idea are not necessarily best written using the samne

Methodology with which one crafts thle finished product.)

As already mientioned, somle other programmiing languages provide at ieanis for this separa-
tion of concerns. Tlhey aic pretty much alike in their expression of coinpetence: one sugaring or

another of predicate logic. (Ko~alski states; [Kowalski 19801: "TFhere is only one language suitable
for representing in fornnation-whether decln-ati ye or procedural-and that is Fmirst-order predicate

logic." Hie mnay he right. 4) I loweser, predicate-calculus-based programmning languages differ in the

atltomiitic compuitational mnethods applied for performance purposes.

In order that a constraint language behase as declaratively as possible, we will posit this design

goal (there will be others later):
Design Goal I

As far as possible, thle computational state of a constraint systein should depend only
on thle relationships stuited so far, and not on the order in which they were stated.

(Ilowevcr. this order- independence is required only up to any amrbiguities in the
relationships.)

A constraint programn should have at clear declarative semlantics unrelated to questions of or-
dering and process. T[his is not to say that thle results of a constraint programn may be tinafected

by die order in which things happen-but if ordering does inatter, then it is because of an essential

(possibly intentional) ambiguity in the stated relationships, in which case thle systemi is explicitly

free by flat to make any choice among those possible.

1.1.2. Constraints Use Local Decduction Techiniques to Compute Solutions

T[he very advantage of predicate calculus-like forinalisms is that they inherently mnake no comn-

mitmlent its ito comrptitational technique-, therefore predicate calculus is not a comiplete program-

rning language. As noted in Jllobrow 19801:

[Predicate logic) is inadequamte asaitcailus because it does not maikke it perspicuous to

IIImXdCl iRSLuCS of niuiry aind resmrce-lirnited reasoning..

4. Kowalski goes on mo may. 'There is only one intieiligent way io process informalion-and that is by applying
deductive inference meihods. IcAl community might have realised this sooner if' it weren't so insular." 'Ibis seems
a trinec strong to me.

§ 1.1.2 The Constraint Alel ofo(mlpulalion 25

And in [Sloman 19801:

When a new fornialisin is little inore than a synlactic ari.nl of predic le logic. translation

is a useful dcbuniking emercise. It is also useful in posing a challenge to clarify what

the tranislation falls to capture. in other cases. More to the point. i)lc cases. would

be translation into a good gleral-pirpose prograniniig lanuiage. e.g. I.ISP or I'OP2

with records or propcrt, lists and a few general-purpose lihrar rutincs. I shall start
being inipresscd b new fornmallisms %%hen t~he), are asAocia.ited \wi~l pOwcrfill new t

i'chnique.%. [Italics his.]

It is cornputational tcchnique, rather than syntactic notation, "hich distinguishes predicate-

calculus or relational programming languages. The difficulty with general theorem provers is the

combinatorial explosion which results from imply trying to deduce all possible consequences from

a set of statements. There must be some means of limiting this explosion in a useful way. Such

limitations may of course prevent a computing system from arriving at a potentially deducible

result, either absolutely (by totally preventing consideration of certain deductions) or relatively

(by postponing the relevant deductions beyond an economically feasible amount of other com-

putation). The challenge is to invent a limiting technique which powerful enough to contain the

explosion, permissive enough to allow deduction of usefulI results in most cases of interest, and

simple enough that the programmer can understand the consequences of the limiting mechanism.

It is this last point which encourages ihe system designer to base lhe limiing Jnechanism on some

easily grasped metaphor.

In this dissertation I shall discuss the technique of local propagatioil. One can view the

notion of local propagation from the declarative point of view: local propagation amounts to using

only one relationship at a time to do arithmetic on known values (as opposed to using algebraic

techniques for deriving new relationships by combining old ones). Of course, most programming

languages share this same property; "algebraic" languages are really arithnietic languages, and only

the symbolic mathematical systems such as MACSYMA, R-I)UCI-, and SCRATCIIIAI) trtily perfonn

algebra. A constraint-based language would be somewhere between the two types, differing from

arithmetic languages in that the direction in which relationships were used would be determined

dynamically, on an as-needed basis. As an example, in a constraint language, one would state

a = b + c, or perhaps a - b - c = 0, or some such thing; this statement might then be used

cornputationally to derive b given a and c. In an Al GOI.-like language one must explicitly write

b := a - c. 'Ibis adirectionality is a property shared by symbo!ic algebra systems and deductive

theorem provers:, but then again, they are oriented more towards algebra than arithmetic. By

constrast, a conslraint system avoids usifig the full power of algebraic transforms.

I.ocal propagation is perhaps more easily visualized in terms of the discrete device image,

however. 't7hink of a 74000083 full adder constraint device, in a five-pin package, the pins being

a, b, c, VqQ, and ground. Whenever any two pins have numbers on them, a value is computed

St

26 C'1 IAPIIFR ONIE INIRODUCION

for tie third pin. (It is partly by this means that the relationships are enforced, whenever a value

is forced by others, it is immediately asserted.) If all three pins have numbers, and they don't
obey the relationship, then the device pushes back hard somehow, trying to make the numbers
fit its relationship, or perhaps the device goes up in smoke if it doesn't succeed. By analogy,
consider a resistor, which takes Iwo numbers, called voltage and current-which happen to be
represented in an interesting physical way-on each of its two terminals, and enforces certain
numerical relationships-also, as it happens, expressed in a physical way-among these numbers.
An ideal resistor operates on a conceptually continuous physical domain, but we shall be interested
here in discrete domains. The mental image of a physical device is apt, however; its operation is
local in that it operates only on intbrination immediately to hand on its pins. All the devices are of
this form, and by cooperating in parallel they can produce global effects.

One would expect that the constraint model might be a good model for multiprocessor com-
putation for exactly the same reasons that data flow would be. Because each device computes
when, and only when, the relevant information is available, a network of cooperating devices can
exploit all possible parallelism in the computation. Constraints have the additional advantage that
no prior commitment need be made by the programmer as to which pins of a device are input pins
and which output, so a single network can be used to perform many different computations (not
necessarily all at once, though). lThis generality of course has its price: a real hardware constraint
architecture will be much more complicated than a data flow architecture.

Although the constraint-system implementations discussed here are in fact single-processor

simulations, we would like the constraint model to serve as a model for parallel computation by
machines each performing locally defined tasks. Therefore we posit another design goal:

Design Goal 2

As far as possible a constraint-based system shall perform its computations on the basis
of locally available information only.

We shall indeed achieve this goal fir computations in which no conflicts occur: but that is

of course the simple case. As we shall see, the constraint model is most useful for analyzing and
dealing with conflicts.

1.1.3. Constraint Networks Can Maintain the History of a Computation

lBecause it is not determined a priori whether a given device pin will be used for input or out-
put, neither is it determined in which direction data will flow along a wire (connection, equality).
Suppose that associated with each wire is a bit, indicating in which direction data has flowed last
the value of the bit does not matter if no data is on the wire. Then, assuming that no conflicting
values have arisen on a wire, when the computation has settled down (all possible local deductions

having been made), various nodes of the network will have values, and the wires with values

§ 1.1.3 The Consrau, Model of Compuiation 27

will form a directed graph, with their bits indicating the directions, describing the history of the
computation. Such a gralh will constitute the particular data flow program traced out dynamically
by the computation on an as-needed (or rather, greedy) basis. Because the graph indicates which

Nalues depend on which other %alues, it is said to encode dependency, informnaion (dependencies for

short).

Such a history can be used for many purposes. It can provide explanations of the computation.
It can also be uscd to resolve conflicts. If there is a loop in the network, then a value may propagate
around the loop and computc a new and dilferent value for" the same quantity. In continuous-

domain networks (such as electrical circuits) this is typically used to provide feedback effects which
by relaxation cauSc the conflict to be resolved. Note that relaxation is of necessity a global, not
local, process, because it is used to resolve conflicts caused by global properties of the network (the

individual devices being assumed to be locally consistent). In the discrete-domain networks to be
discussed here relaxation is replaced by the global processes ofbacktracking and resolution. 5

The current work at M.I.T, on constraint-based computation was inspired hy the need to
analyze physical systems and to aid the engineering processes by which such systems are designed.
Ibis dissertation began as an effort to provide a basis on which to build a design system for in-

tegrated circuits. The intention was to provide the underlying mechanisms for recording design
constraints, in the form of rules by which parts of the designed object interact. For integrated cir-
cuits, some of these rules are geometric in nature, some electrical, sonic logical, and some oil more
than one of these levels. The intention was to provide a uniform mechanism by which rules and

values could be recorded, deductions made, and consequences asserted in a way that would interact
well with the physical descriptions of the design. Nioreover, the mechanism should automatically

detect conflicts, and provide information to aid in explaining to the user the reason for the conflict.
While the results of this research have not yet been incorporated into a design system, similar
mechanisms have been used in design systems such as l)aedahls fShrobe 1980]. My intention is

that the research presented here should serve as a basis for building a self-contained constraint-
based language to serve as a host system Oil top of which to build design systems. The simple
implementations presented here are similarly built on top of a host I.ISP system. [he constraint
language will provide certain services to the implementor of a design system, such as recording

design constraints and detecting and resolving conflicts, just as iisp provides certain services such
as automatic storage management, which records given dala in a structured form using a linear
memory, and detects the implicit release of data structures and errors caused by incorrect access to

structures.

5. Relaxation and resoluition arc not inlerchangeahle. but conililcmenary. being applicabhle to dillrent situations.
A full constraint-based system would probably need to use both techiiques: this was done in T1ItNG.AIt Il1orning
19791. ihr example. In this dissertation, however, I arbitrarily focus only upon discrete domains. bcause relaxation
has already been more throughly explored.

28 CIIAPFIER ONi IN I ROI)UCI ION

In this rele as a design utility, a constraint system ought to have the property that it works if

one gives it but a little infornmation, and works better if one gives it more information. Iliat is, the
more relationships it has to work with, the more can be computed. I lence a third design goal:

)esign Goal 3
A constraint-based system should, so far as possible, be notolonic. lie more is
known. the more can he dcduced, and once a value has been deduced, knowing more

true things ought not to capriciously invalidate it.

1.1.4. Assumptions I'rosided Inited Non-nonotonic Behavior

The word "capriciously" is included in I)esign Goal 3 for a reason. There are sonic situations
where it is useful to make assumptions, in order to provide "default" behavior. I:or exanple, one

might want to say that an object can be oriented in any of scveral ways by rotation and reflection,
but that some one orientation may be assumed unless explicitly proven other" ise. This is necessary
to be able to draw a picture of an incomplete design, for example. If one knows that an inverter is

part of a circuit in a particular Iposition but the designer hasn't yet specified whether it faces left or
right, it is unsatisfying simply not to draw it: it might be better drawn in some deiult orientation,

perhaps with an annotation to that effect.

Unfortunately, introducing assumptions violates the principle of monotonicity, because infor-
mation computed on the basis of an assumption may no longer be valid when the assumption is
overridden. Therefore providing nmre in formation may cause fewer (though sotunder) results to be
known. We will permit this limited form of no.-monotonicity, but nevertheless desire the results

of computations to be relatively stable: hence a value, once compluted, should not be retracted by
caprice, but rather only because new information has definitely rules it out. Iikewise. if either of
two values is possible and one is (arbitrarily) chosen, then that value remains H11nil rulles Out, rather
than osLillation occurring.

Ain assumption can be expressed as a deductive rule of the forml "l)edtlce x = y provided
that the system remains consistent." Now of course consistency is a global property. and so an

assumption mechanism also violates the design goal of locality. I lowever, the rule can be phrased

operationally as, "If one of x and y is known and the other not, deduce : = y," which is local,
with the understanding that iii the event of conflict a general global mechanism for conflict resolu-

tion will take over. This is in Fact how assumptions are implemented in the systems described in this
dissertation.

At least one dependency-recording system [l)oyle 1978al [oyle 1978bJ [I)oylc 19791 has been
so general as to allow deductions ito bie made on tie basis of anj'lhing being mnkno'A n. Such a

syslem has grossly non-monotonic semantics which leads to some logical difliculties. There has
been some work done IMcl)crmott 19791 on ibrmalizing the semantics of non-monotonic logics.

.. :..m 9 a ZI::.. i.

§ 1.3 The Thesis 29

Thiesc difficulties are avoided here by confining the non-monotonicity of the systen to a fairly well-
behaved special case. An assumption mechanism allows the constraint system to make guesses

about possible extensions 1o the solution computed by local propagation, and thus provides a
limited means of overcoming the limitations of locality.

1.2. The Thesis

.Constraints are a model for computation which has both a static declarative semantics and an in-

tuiitively appealing isualitation as physical de\ ices which perlbrm dynamic local computations.

T The constraint paradigm places limitations on the deduction process w hich are stringent enough
to preent combinatorial explosion, loose enough to permit interesting computations to be per-
formed. and sufliciently comprehensible to allow the programmer to predict the ell'ccts of the

limitations.

* Constraints provide a natural way to express and enforce the relationships of designed objects,
and therefore a constraint-based programming language is a suitable base for building systems

for computer-aided design (CAD).

a A constraint systeln can easily retain information about the history of the computation which
can be used to produce explanations of the system's behavior, and to trace the root causes of"

conflicts.

o Constraints include data flow as a special case. A suitable compiler can reduce a constraint
program to a set of data flow programs, one for each possible partitioning of the program's
terminals into inputs and outputs.

o ILocal propagation as the normal mode of computation, plus dependency-directed backtracking

for resoling global conflicts, can serve as the implenhentational basis of an expressively power-
iful and potentially very elicient computational language.

o A constrint-based language can be efliciently implemented by letting the structure of the im-
plementaion correspond in a direct way to the structure of the physical device imagery for

constraints.

1.3. Overview of the Dissertation

This oerview has two sections. One describes how this document was supposed to be or-

gani.cd (and there are reasons for describing this, for it provides perspective on what was done and

part of what remains to be done). The other section of course describes how it i.s organi/.ed.

L '.

30 CllAPI FI ONlF JNIROI)UCHION

1.3.1. Thec Author I lad a Grand Programi for Sols ing the Entire Probilemi

Whcn I set out to pursuic this research. I had a plan, as many do. T'his dissertation was to

have been divided into fouir parts, with tile following outline (this is not1 the actual outline for this

dissertation), in which eachi italicim.d heading represents tile titlc for one chapter:

Original (Not Current) Out line

/ripya$4afioII. im plemnting adircctional devices which p~ropagate valucs.

Dependencies: recording computation histories and gi% ing cxplanations.
ReIrmawn: using depcndencies co resol% e conflicts.

Issupipits: limited non-mntonic conipuion based onl guecsses.

Graphics: draim ing constraint networks, constraints onl graphicail objects.

Tables: handling compoulnd objects suich ats arrays. whose values may be only partly known.

Part III. Hierarchy.
A'bstraction: packaging networks to look like single constraint devices.

(Closures: devices ats data objects: constraints onl constraints: ineta-circularity.

/ emnnws: using hierarchy to guide the production of explanations.
Part Il1. Algebra

Nolation: an abbrev iated nested ex pression notation.

Slices: aiding propagation through multiple redundant points of view.

Transformaions: pattern-directed invocation*, automnatic network augmentation, loop-breaking.

Pa~rt WV. Efficiency
(ontrol: explicit control; propagation of desires: mecta-constraints: heutristic assutmptions.

Specializationi: case-splitting in the primlitives tio handle common situations quickly.

C'ompilation: producing primitive devices fromt network specifications.

Reclamnation: garbage collection on the network,, reclaiming reconstructible histories.

(I do not expect thie reader to comprehend thle comiplete significance of all cryptic notes above.

They are explained latter in thle dissertation.)

As tie research progressed, however, it beccame clear that within imposed time limits I had
the choice of cxamnining all of these topics in a cursory mianmier, or exploring a subset of themn
thoroughly. I chose the second option.

1.3.2. The Author Settled for D~oinmg liIallf'lorougmly Rallier Iimn All Poorly

TIhis dissertation does not by any means encompass all of thle material in the preceding
outline, hut that which is covered here is covered thoroughly. All but the last chapter (Conclusions)

concerns existing constraint systenis that have been demonstrated to work. All the codc for all

§ 1.3.2 Overview of the Dissertation 31

these systems is included in this dissertation and documented in the text. 6 Not all the text concerns

low-level details of the. code, however. 'ach chapter is typically split into a high-level discussion
of issues. and a low-level discussion of implementation. I have attempted to arrange the tcxt so

that tie reader may read the entire dissertation, or just the 'nglish text and not tie code; or just
the text, and skipping those sections which contain code. All smple computer input and output ap-
pcariing in the text are actual transcripts of the operation of the systems presented and documented

in the text.

This dissertation is divided into three parts. A condensed outline and a Summary of cach part

and chapter Follow. The arrangement of the material is vaguely similar to the originally proposed
outlinc. The material in tie above outline which does not appear below is discussed at some length
in the chapter on Conclusions.

i rier Out line of)issertation

P)art 1. Constraints. Piropagivhon. Dt')endrn/ciei; Relrin-liont, AsInlo~ons,

Part 1. Ingineering. hfficienc. Correctness

Part Ill. Abstraction. Hierarch.y. Compilation.

Full Outline of)issertation

Part I. Constraints. In this part a constraint language is defined incrementally and the system
for executing it implemented by stages. Each chapter builds on the work of the previous one, until

by the end of the part a moderately sophisticated constraint system has been constructed.

Propagation. A minimal toy constraint language is defined- it permits the statement of equalities

and some simple arithmetic relationships. An implementation representation is chosen, and IISP

code for a constraint interpreter is presented. Sample runs of a trivial constraint program are
exhibited, and some problems and deficiencies discussed.

Dependencies. Mechanisms are introduced for recording die history of a coniputation. Utility
procedures for extracting explanations from computation histories are demonstrated. Ways of using

the network as a symbolic (algebraic) representation ofa quantity are discussed.

Retraction. Conflicts can arise in a network in a ilmber of ways: all are a consequence of global

properties of the network. Flence a global process, dependency-directed backtracking, must be
used to determine tie precise causes of a conflict. Means of choosing which premise to retract are

considered.

,,ssuUmplions. Constructs are introduced for adising the system on when to make asstnmions or

"educated guesses" about the value of some quantity, Such guesses may be inconsistent because
of global considerations, and so nogood sets are introduced its a mechanisn for recording in a
locally accessible way the global reason for forbidding a guess. An impllentication of assumption

6 Ihe code is written in I isp Machine I ISP (Wcinrcb 19791, a dialcct of 1.1SP dcsccdcd from MACI ISP Moon

1974] ('onstnicts which arc peculiar to this dialect arc describcd along the way.

ti

32 C1 IAP[I:R ONEi I\ I IC)00t CI ION

mechanisms and automatic retraction of incorrect assimil)toiis is presented. A large example (file
n quICens problem) is discu~scd and sohed uising at constraint program. \%hich is sho~k it) be
potenitially af more efficient technique than the usual chronological backtrackig method.

Part 111. Engineering. TIhe first part is concerned priinuuilv " ith languiage definition and a clear
and simple imlemenntation which demonstrates the concepts in ol ved. I lowe~ cr, that implemlen-
tation is nlot par-ticlarlyl efficient, and is not obviously correct. I his parit contains it co mplcte re-
impleimentation of the saine langualige, With issues of efficiency and correctness in mind, Ilre cntire
state of' thie system is mnade explicit ats data str'uctures. rather thanl ketting pilart he inilpliCit in the
program state of thc I isi, code which implenrenlts tilc systen.

hficiwevm. A cumplete re-implemientation is p~resentedl the language defined in the first part.
Multiple reasons for at believing it \,;tile are explicitly recorded. [hle computation rules are lpre-
catalogued to pernnit ellicient dispatching. A queue-based control structure is introduced: the
queueIs Containi tasks to Ibe scheduled, and most tasks com"pute For only af liiniged litle, enqucuing
other tasks. While priority ordering of* tasks is introduced for efficiency, the tasks nay he correctly
scheduled in any order. Fffoic is exp.ended to make it possible to characteri/e thle state of thle systemn
alt thle timie af new task is to he selected: this is intended to ease at demonstration of coriectness. Thie
state of the system when contradictions are outstanding is still well -defined, and both explanation
procedures and niodifications to the network are designed to operate correctly even when tile exist-
ing network contains contradictions. '[he queute-based struicture' is similar to that Used by inulti-
programintg schedulers, and is intended to mimic thec stanidard singie-processor simulatio~n of a
inulti-processor system, thereby mnaking it easier to transfler the ideas to if true multi-processor
implementation.

Correaness. 'This chapter contains no progrmn . it reflects on, tile implemnentation of thie previous
chapter. While lit attempt is mnade to provide af rigorous proof of' the implemnentatioii. a large
iuimber o~f tie necessary iii ariants are presenited to sketch a possible approachi to a proof. The
priograim is mery, largc and would take considerable etlort to prove rigorously. I lowever. attention to
the intended invariants stated her'e certainly aided thie implementation process and served to detect
mnany difficuilties.

Part Ill. Abstraction '[he language dexeloped in thle first two parts has primitive (lexices and a
meians of corniing themn. but no meanis of abstraction for packaging ipl a combination to make it
look like af primitive device. In this part we definie a macro mechan isn flor this purpose.

Hieru'n'l). 'I hie "flatness"' oh' the languiage is meliex ed by introducing hier~archy fin two ways. One
is a mnacro mechanism by which a network can be packaged uip and mnade to look like at primitive
device: this induces a macro-call hierarchy. Thle other is at parser For at generaliied nested algebraic
noC tat ion. sC) that arithmnetic expressions Of it mughI lyilie tisim sort can hie used to nC ia te co nst rainlt
network.l'he parser also implemients conx nient abbreviations.

('opiluion. Wheni if macro) device is iiistantiated. af copy of the defining netm ork is produced

§ 1.3.2 O()iveW uf Me Disscriaiioni 33

to perform the actual computitions. Hence there are no comfputiof rules associated with macro
dcfnitions. but only w ith true primitive dc'ices. fit this chapter at comipiler is dcscr ibed which
from die network for a macro dcdLIccs all possible Com1puttio tit rles of interest and constructs a
definition fiw an equiv'alcnt truc primitive device.

C'onclusions. The research described in the dissertation is suniari/cd. Tentativ.e reSUlts not con-
tained in the dissertation proper arc discuIssed, ats well as foreseeaible extensions to this work. Work
by other researchcrs is discussed and compared with) this research.

34 CHAFFER~ ONE4 IN IRODUCIION

rI'his page initentionally left blank.I

Part One

Constraints

35

r

While constrajnt.s are superfiiiall/c Similar to js/. in aetualit ' thtv are more
close/i' related to alligator.%: theY .mnap up their inpittv greedlY. ScalY green
atligators swimni ail ' among the cevs. evokinlg ii ages (y asloilalts working
in in silent. black spac. theirfiee, (almost non-exvistent in the cas~e (Y'alligators)
Mlagg/ng in wthletver direction chanuce occasion S. ina%inlh as gra vii) is of little
relevance in the void.
fn space. as elsewshere except tin swamps. and otlher places wihich are also
excepti.ons to thc rtde, there mue. general/i speaking. no afigaterv. or for that
matter their ostensible and ostentatiousV CousinlS. the (./'r-k'iouS (SO !en pie seem to
think in their dreams and flinasic. although / must a Vi / cannot pcrsonalhY
v'ouch Jbr this notion as a hard and e.Ntabh hdd Pu t) crocodiles. This is. however
a subject fir fierce debate.

-Anonpiouis

36

The ineanin' oJ the Inornit,
ifAA jdthe inoanin* (yie 11Wfloof

B.%.pe'aks a .Vpecious .peck of speech
That, quaetIrs pa~t the Noon.

-Wail Kdll (1952)
IGo Pogo

Chapter Two

Propagation

7 7I IF (11NFRAi I. h bhind constraint-based systems is tile notion of local propagahion-that
at number ot small processes arraogcd in) a network, cach processing infobrmation locally

and sending results on to neighbors, can cooperativecly p~roduce a useful global effTh le direction
of comnputation is determnined dynamically: at constraint attempts to enforce It relationship among
several parameters without any prejudice ats to which are inpuits and which outputs. It is willing to
compute any parameter from others when those others have been determined.

In this chapter we introdue a trivial constraint language. T[his language is exceedingly weak.
and hardly useful for practical purposesi. It is intended ats a toy for didactic purposes. It has pur-
posely b~een pared to the bone, stripped of all fctUres not directly needed to illustrate the principle
of local p~ropagation. T[he implementation of' this language is likewise trivial, and consequently

suiffecrs certain ineficiencies (which %Nill be remedied in later chapters).

2.1. A Trivial Constraint Language

TIhe data objects of our language arc the integers.

It is possible to speak of an object without knowing precisely what it is by using at name for it.

Such a name is at variable. A %aiiable can be declared so:

(variable x)

37

38 CI IAlI FR TWO IIROPAGAI ION

Then x is understood to denote an integer, though which integer it is may not yet have been

computed. If the name x is mentioned later, it is understood to refcr to this variable.

An intcger constant may be explicitly mentioned in the languagc by using the constant

constnhct:

(constant 43)

In cffect this declares an anonymous variable and also declares that the object named by this nane-

less %ariable is the integer 43. Of course, this is not very lseful by itself, because the variable has
no n;ne, it cannot be referred to litter. However, the form (con s tan t 43) itself serves as a

denotation of the variable, as will be seen.

Two % ariables may be declared to denote the same object by using the declaration:

x y)

As we shall see, the computational effect of this will be that when a value is computed for one

variable, that will also hccome the value of tie other variable. As a special case, one can assign a

specific value to a variable by equating it to a constant:

(= x (constant 43))

'Ihis states that dhe vahic of x is 43 (and also that the value of y is 43, since (= y) is it)

effect).

One can also state more complex relationships among variables by using constraints. We draw

a constraint relationship as if it were a little Tl. device. I ogic devices, however, "compute"

in only one direction-some pins only accept inputs and some only produce outputs-but our

constraint boxes generally treat each "pin" as bidirectional. Iach pin of a constraint device is a
variable: it has a name, and can be equated to other variables.

Our language provides an assortment of devices for stating relationships among integers. In

describing them, we list the name of the constraint type, the names of the pins, and the relationship

enforced by the constraint. The pictures we will use for these constraints appear in Figure 2-1.

adder {a, b, c} c = a -+ b (alternatively, a = c - b orb = c -- a).

multiplier (a, b,c} c = a X b (alternatively, a =-c/b orb = c/a). Note that c/b is not

delined in this language if b = 0 or if c/b is not an integer. (When

b = 0 then c/b is many-valued (indeterminate) when c = 0, and

no-valued (contradictory) when c 7 0.)

maxer {a, b, c} c = max(a,b).

1. Indeed. the inspiration for this computational paradig~n was the mnital imagery a..ociated with electrical circuits.
[Susnsman i0751 [Stallman 1977]

§ 2.1 A Trivial Cons raini Language 39

C MX CA A> B
BB A

Adder Maxer Equality

A A P

A > - C MI C

B -L B A B

Multiplier Minner Gate
171OuRr 2-1. Primili~te C'onsiril IDc~iks un hitcgcrs.

minner la, b, Cl c= min(a, b).

equal ity (p, a. b} p (a - b), where the truth walue for p is represented by 0 for
false or I for irue, as in API..

gate (p. a, b} p = (a = b) (alternatively, (a ? b) - p).

No primitive is provided in the language for subtraction, because that is simply another way of
viewing an addition constraint, similarly for division. More generally. a single constraint box can
represent a given relationship and also all of its inversions. For example, a single exponentiation

box could represent all of x = yZ, z = logm x, and V/= Vx.

ItiS InTeReStinG TocOnSider the inversions of other operators as well-certainly they must
be considered in order to provide a complete implementation of a constraint box for that operator.
For example, what is die inversion of c = max(a, b) which finds b given a and c? Ict us denote
this by arcmax, a. Then we can provide the following definition:

c ifa <f c
arcmaxca = unknown ifa = c

error ifa > e

Note that sometimes the value cannot be computed because the inputs are inconsistent (as in the
case of dividing by zero), and so there is no consistent value. At other times the inverse may have

multiple consistent values, and so no unique result can be computed. This occurs fur arcmaxca
when a = c, for the result can be any integer not greater than c. A more familiar example is that

the square root operation is double-valued for positive inputs. We will return to this subject later.
If we have several constraint boxes. we can "wire them together" by connecting their pins.

Since each pin is a variable, two pins can be connected by equating them as variables. We indicate
this in a diagram by drawing lines among the pins, according to the ustal conventions of logic

40 CIIAPII:R]IVO PiOP \GA I ION

FAHRENHEIT CENTIGRADE

FiAI: 2-2. A (unslraiml Nctwork tfor Cn~LIing remiperaittres.

diagrams. 'Textually. we notate die interconnection of several constraints in two steps. First we
declare and name instances of constraint devices:

(create add adder)
(create inult multiplier)
(create othermult multiplier)

'I'his creates an .iddcr named add aind two mltiplieIs named inu 1it and o the rmu 1 t. Next we
state thc connections aniong the pins:

(~(the b add) (constant 32))
(=(the a add) (the a othermnult))
(=(the c othormult) (the c mult))
(=(the b othermult) (constant 5))
(=(the a mult) (constant 9)))

We have used the the construct to refer to pins. Theli expression (the x y) refers to the pin
named x of the device named y, and may he read "the x of Y".

L et us also declare two variables f al renhe i t and ce nt ig rade and connect them to (i.e.,

make them alternative names for) two pins:

(variable fahrenheit)
(variable centigrade)

(=fahrenheit (the c add))
(=centigrade (the b mult))

§ 2.1 /1 Trivial (onsiraini Language 41

FAHRENHEIT CENTIGRADE

FIGURi: 2-3. Comnilati o of a Tcnipcrittlre Conversion.

Theli result is shown in Figure 2-2. [hIis network in fact represents die familiar tcmiperatUrc conver-

sion constraint btweeni thc variables f ah renhe it and cen t ig rade.2

5 x_(f ahrenhe it -32)
centigrade =-__- 9 ____

Suppose now, for examnple. that we state that cent ig rade is -40.

(:centigrade (constant -40))

[Ihis results in the following sequence of computations:

0- From: cent igrade = (the b mul t) = -40

(the a mul t) =9

the constraint mulIt deduces (the c mulI t) -40 X 9 = -360.

0- From: (the c mul t) = the c othermiul t) = -360

(the b otherinut)= 5

diheconstrainit othermutl t deduces (the a othermul t) =(-360)/5 -72.

0- From: (the a otherinult) =(the a add) = -- 72

(the b add) =32

the constraint add deduces (the c add) = (-72) -32 =-40.

'Ibis computation is Pictured in Figure 2-3.

'['his computational technique is called local1 prupagafion. I ach deduictionl is performed locally

by a single primitive constraint device. from daila immediately a% ailahic to it. [Ihis resuilts in it step)-

by-step propagation of valuecs from one device to the next.

2. (bis examle was borrowed in spiri f ront (Rorning 1979].

42 CIIAPIr " /TWO PROI'AGATION

A A A

B F 8 < F B F

E cISE C>I E
()(b) (C)

FIGuRi 2-4. Sonic Organi/laons for Implementing CeIls.

In summary, the statements permitted in our trivial constraint language are:

* (create constrainl-name consltraintl-Iype), to crcate a constraint instance.

(variable wariable-name), to declare a global variable.

* (= = thing-I thing-2), to equate two variables.

The forns that may be mentioned in a = = statement are:

* variable-name, the name of a declared global variable.

* (the pin-name cwo/rainl-nanle), which means the pin pin-name of the creatcd constraint
constraint-name.

a (constant inlege,), which effectively means an anonymous variable with integer as its as-

sociated value.

The constraint-types provided by the language are adder, multiplier, maxer, minner,

equal ity, and gate.

2.2. Implementation of a Trivial Constraint Language

Here we discuss a complete implementation of our trivial constraint language in I.ISP (more

specifically, Lisp Machine tist' fWeinrcb 19791). F.'irst we describe the data structurcs used to

represent variables and values: then the representation of constraints: after that, the "evaluation
mechanism" which effects computation by local propagation, and finally, definitions of primitive

constraints.

2.2.1. Cells are Used to Represent Variables

A cell is a data structure used to represent a variable. It is used not only to contain a value, but

to record the equating of the variable to other variables.

§ 2.2.1 Implctmnlalion qJ'a rtivial ("o.sraim language 43

Iquating of variables is transitive. Whenc er a %alle is determined lor one variable, then all
variables equated to it must also receive that value. and all variables equated to them, and so on.

This fact constitutes a propagation requirenent. 3 Variables transitively equated obviously form an

equik alence class. This class can be organized in one of several ways for purposes of propagation.

(a) All equivalences are explicitly recorded. Ftch cell contains the set of all cells to which it has

been directly equated- call this set its neighbors. When a ell receives a %alue, the value is

propagated to its neighbors. which will re.Cursively propagate it. (See Figure 2-4a.)

On a sequential machine this technique requires space linear in the number of equivalences
(which may he anywhere from linear to quadratic in the number of cells): constant time to add

an equisalence: and time linear in the number of equivalences (belween linear and quadratic

in the number of cells) to propagate a value throughout the class. A recursive propagation

procedure is required.

(b) The transitive closure of the equivalence relationship is explicitly recorded. Each cell contains

the set of all cells to which it is transitively equivalent. If an equivalence is added between two

cells not of the same class, then every cell of each class must have all cells of the other class
added to its set. When a cell receives a value, then it sends the value to each neighbor, but no

recursive propagation is required. (See Figure 2-4h.)

On a sequential machine this requires space quadratic in the number of cclls: time linear in the
number of cells to add an equivalence; and time linear in the number of cells to propagate. 'Ile

propagation procedure is simpler, however, being iterative.

(c) Note that in the previous technique all the sets of neighbors would be identical if a cell were

considered its own neighbor. h'lierelbre let this set be represented only once and be shared
among all cells. Furthennore let die value not be propagated at all. but be stored in only one

shared place. (See Figure 2-4.)

On a sequential machine this requires space linear in the number of cells, time linear in the

number of cells to add an equivalence (because a new set of neighbors must be constructed-

the perhaps simplistic assumption here is that it takes linear time to take the union of two sets

of neighbors): and constant time to propagate.

We choose the last option for reasons of perlormance and pedagogy.4 ([he time to create n equiv-

alences is still quadratic in n (lbecause each one can be linear in the number of equivalences ,dready

made). It would be possible to use even more clever techniques but we shall forego that here.)

Let us tieretbre define a cell to be a data siructure with lour components:

3. INualil is thereforc a special kind of constraint which also perfons local propagation of values. It could be
represented in the same way as other constraints. hut fur the fact that wc intend to use cqullity itself as the nicans
for connection of devices. I ence equality must he handled spccially to amoid infinite regress.

4. And pcncrsiy? We shall see that this cleverness makes things dilicull later, when compound objects and
dependencies are introduced We shall then have to choo.e another representation.

44 CllAl TVR 'l'WO PROM GMi ION

A +C
B

NLNIL
I

CEL-NAE CLL -43 FhAHRENHEIT(elswih aueFie

(1)LAn-ONERainiue rmrl frue nt-ag citrato n eugn.(Ii

(4) repsitoy, w ich RF5 isadt Ttree rcprectn thins se with cclle.

cmoentrials nol bseuntique heceal the ce1IL~ain lblsith thle Sstm.)nrshudhvedsic

names And allrhihmyb nlidcaigta the goa cells shudeaeditpcraes ns a elceptionae speciale, all

c(3Aane ihav is nul owneradl name"?". we i ul rte ilnm ftieonri

Similarly, we define at reposiiory, to be a dlata structure with three comiponents:

(1) A Ilag boundpl, indicating whether or not it value has been computed for this equivalence class

of cells. 5

(2) *lhe conlents, which is the computed Value if the bf,'widp flag is true.

5. fiislcad or hating a wparalc flag. one could sinipIl hawc a resmred %alue (nil or "unhound" or sorwilline)
indicatech Ii ahcnce or an explicitly comnpuicd %aluc. ibiekhniquc call save %pace in an CllICICulI itiplenlenlation.
We clrnusc to use a flag here for clarity.

§ 2.2.1 Impleetation qj'a Trival ("ounaint I anguage 45

(deftype repository ((rep-contents ()) (rep-boundp ()) (rep-cells '())
(format stream "<llepository~:~*; -S-]-@[for (St,}]>

(rep-boundp repository)
(rep-contents repository)
(cell-ids repository)))

(defmacro node-contents (cell) -(rep-contents (cell-repository ,cell)))

(defmacro node-boundp (cell) .(rep-boundp (cell-repository .cell)))

(defmacro node-cells (cell) -(rep-cells (cell-repository .cell)))

(deftype cell (cell-id cell-repository cell-owner cell-name)
(format stream "<~S~[~2*~; (-S of -S)-]: -:[-*no value-;~S~J>"

(cell-id cell)
(cell owner cell)
(cell-name cell)
(cell-owner cell)
(node-boundp cell
(node-contents cell)))

(defun cell-ids (rep)
(rorlist (x (rep-cells rep)) (cell-id x)))

TAIRI 1I 2-1. ILISP ('ode I.fining (dl ;nd Ri)'riwor) Data r)-p s.

(3) The cells, a list orall cells which have this data structure as its repositor). IlhLs dis ColnstituteS a
set of back-pointers. From any cell all cells to which it is equivalent call he discovered.

Figure 2-5 shows tlree cells which have been equated and given the valtic 5. One cell is tile c pin
of an adde r constraint tihe one with name ? is a constant(N hich was prohably tle Source of the
value 5), ad the one w ith name fah re n he i t is a globally naied cell.

It is often convenient to consider a repository and all its associated cells to be a single object-
we shall call 'such a collection a node, because it corresponds to a node of at network graph in the
pictorial representation. A niode is die conljunction of twto or more arcs (edges, wires). Alternatively,
a nlode represents an equivalence class of" ariablcs. We can draw a fine distinction by speaking of

a value as being associated with a node or with a cell, the fCormer case is a simple statement that

all ile cells of tile node have the same value, but in the latter case we draw specific attention to an
important relationship between the value and that particular cell of die node.

The I)I; code in Table 2-1 defines cel and repos i tory to be I ISP user data types. Facch
deftype definition (ifdile form

(deftype name ((oniponent-I coinponeo-2. ...) printer)

defines a new user dala type called name. This will be a record-style data type with a fixed number
of named components. It implicitly defines a nutmber oit' fimchios to pelforui constrt'liion, selec-
tion, and predicatiol for that type. Also, the method foir printing objects of that dawa type is
specified. Once the type definitiolhbove has been made:

46 CIlAPIlR 'Wo PROI'AGAIION

* (make- name) will create and return a new data structure of type name.

* (name-p x) is a piedicate true iffx is of type name.

* (requ ire- name x) signals all error if x is not of type name. This is useful for error-

checking and in-code documientation.

* Kach componenl-i in the definition specifies the name of one record component. The component-
.J can be of either tile forn cnapne or the form (cmne inlval) .In either case cnamn is the
name of a component of the data structure, and is the name of a selector function (actually a
I is5' macro) for extracting that component from an object. Thus (cnamc .) will return the

contents of tile cnizine component of the object x. which must he Of type 1man. Moreover. the

form (setf (enanic x) neii-val) will change the cnaim component of x to be newval. If

the first Irm for componenl-j is used, then the component value of a newly created instance of

type name is undefined: otherwise. the component is initiali.ed to inittal.6

* '[he form printcr is used by the I is, system to print objects of type name. Within the prinler

form the variable name names the objcct to be printed and the variable stream names the
stream to which to send the output. The details of the format finction arc unimportant here:
examples of printed objects will appear later.

As an example, the definition of repos i to ry in '[able 2-1 defines the function make- repos i to ry

of no arguments, which generates an object of type repository with three components
named rep-contents, rep-boundp and rep-cells. It also defines three finctions
rep-contents, rep-boundp, and rep-cells which extract conponents from objects oftype
repository. Saying (setf (rep-contents x) 43) takes the value of the list, variable

x (which must be a repository) and alters its rep-contents component to be 43, The finc-
tion repository-p is a predicate which can be applied to any listP datum, but is true only
of repositories. The procedure requi re-repos itory signals an error if its argument is not
a repository. Finally, a repository with no value and two cells in its list of cells might print as
-<Repository for CELL-34,CELL-36)".

Table 2-1 defines not only the data types cel l and repos i tory, but also some extra mac-
ros for dealing with nodes. We do not define a separate lISP data type called node: instead, any
cell of a node may serve to represent the node. The repository of a node holds data belonging

to the node, and so the macros get the repository of the given cell and then extract the desired
inforiation from the repository. 'lhus. for example,

(node-contents x) -4 (rep-contents (cell-repository x))

andsimilarlyfor node-boundp and node-cells.

0r As a mailer of pr(oeianiming t lc, I hais written iniliali/afion fo is i 1 lhe progrant depends on Ihosc initial
%alues: components wilh no deraull %alues specilied in the der type declaralion munst be initiah/cd 11) the program
before being rend. Anothe tlillk of illy propramling st lc is that I write () to mean the conlant "false" and
to meian the constant "null list Son I .1S,)stei do iot identify the null list with the atomic synhol NIL.

I

§ 2.2.1 Imlemeni~w atioII of a Trivial Co,,siraii ILanguage 47

(detun gen-cell (&optional (name '?) (owner)
(and owner (require-constraint owner))
(let ((c (make-cell))

(r (make-repository))
(n (gen-name 'cell)))

(setf (cell-id c) n)
(set n c)
(sett (cell-owner c) owner)
(setf (cell-name c) name)
(setr (cell-repository c) r)
(push c (rep-cells r))
c))

(detun constant (value)
(let ((cell (gen-cell)))
(sett (node-contents cell) value)
(sett (node-boundp cell) t)
cell))

(defmacro variable (name) (setq ,name (gon-cell ',name)))

TABi: 2-2. C'reation of Cells. Constants. and Variables.

+The globalILISP symbol CELL-43 ADDER-27

'4 DdUE CELL

PRINT NAME "CELL-43"

ETC.B

FlCELL-10 2-.TeRs f h raig, Pnfra dIr

Som Utlit prK~Ctlrs frCELL-rOWNgERWclsacslwlinTbc22 lcfnto

gen-celEL-AM 1 elrisanwcl ihgvnnical wcr(f litdhelhelllCs?

and ileownr i ntii).A nn-nll-orfLlPSITORY osrjlt(lsi ~~k~ ~dcfrc

by hc al toreui e-onsrant n e-celN 1).A L SEIcli o h onlcl

REP-CNTENS NI

48 CiIAI,\ FR T'WO 1mi'ROP.\ ltO.\

is created fir the cell: uliis is af (global) i si, variable which receives thle cell as its ualuc. This

fact is of not consequence in (lie constrainlt comlpu.tationl proper, but is usefuil for meta-linguistic

and deliugging purposes. A repository is also created for the cell and liniked upt to it: thus every

ewycreated cell constilutes a lie%\ node unto itself'. Figure 2-6 shows the resuilt of tile call

(gen-cell 'c adder-27).

Sa ing (cons 0a1. L 5) will generate a new cell whose \,tie is 5 (and Alhose bollnd~p flag

hat- been set trule!). 7 Sa. lug (v ar jab 1 e f 00o) will cauise the global 1s N, ariable named f oo to

hav\e as its \attie a cell whose global niamei is allso f 0 0.

2.2.2. Constraints are liist~nces of Coitrint-lFypes

Juit as inl implementiations of ordinal-\ programinlg langu ages one conveniently di\ des a

procedure in to at constanit part (the p rogrami text) and at \a iabie parit (pa ramneteris). so it will be
convenient to split off thle Constant part ot' a constraint. We sM ll call this(the 'intan-ye.A

const ridit-type contains the "prograin text- (rules for computation inl \ arious circumstances), its

own name (for identification purposes), and the names of parameters.

Any giv en instance of this constraint-t\ PC we call at constraint. Suich an iinstance refers to its

cons[rai m-type 1br thle sake of thie constant in 11orination the latter containls. T[he constraint also has

at list of parameter -valties- which correspond tol thle parameter names inl the constraint-ty pe. Tihese
1. alies- aie actually cells used to containi the %alucs. Finally, each constraint has a gener-ated id and

at global user namne in the same way each cell does.

Table 2-3 gives definitions for thle data structures cons ti-a i itt-- type and cons t ra i nt.

The function ge n - cons tra int creates anl instance of a given constrainit-type. It imn'.ets a name

for (he constraint instance: if the name ofl (the consitai ut-type is b a 10 a, then tlie nale of thle

instance \k~ill be bazo 1 a- mmn. It also creatcs new parameters cells to serve ats pins. iguire 2-7

shlows thle data-structure represe utatioli of an adder.

In Table 2-4 is tile code for impllemlenting thle Lte construct for referring to thle piins of a

constraint. [he imiplemnentation is in layers. inst, tile macro the is purely at bit of ss uactc suigar

ao i call ito tile Ifucton * tile, to avoid haing to \\rite at qulote 111.10 F.il[e f(t nclionl * the ill

turn calls look up to do tile real work, signlalling anl error if look tp [aiOls tol locate the pinl. Now

7 t he reison (tot using (he cons t anii t ~rod mn i constrin rl anuil is purel) prjiaiotl C: %s e 'xih to use the
'Iiilild ISI 0.itI1101 11 do' L% M~tch work &, piissitiI folr 115 h contiiiining to a few iel iiin 10111 Sc .a airange

for all conlstruict(of nor laiiguave ito he escetitahie Ii st' code with thle proper dec: this 'smes is thle '..oik Of writing
ourl own anlaeiig lilerpirvter fill moch the miiii i that il confolmiliv to the v15151 1;irellihlml 1 1.10 s \ 1Iti Sav'es
us iihe \%ol k of writinig :ll topiii paisr. because %ke (-.in sitilpik 115 (e moaiId lIS1 iiIIIClilii red) 11 wex~ were

\kiling lo wtie our own iniilireter.ih th I teilopIcme Could ii iliht' tets~fliet al Itinteger to mcali a cell
coilai;tli tht neger. for mimiple

8 this is an ex ample of wanting I ist' to (1o tile work vit hoiit full\ accommtodatin I nIiSP s~ nli 51:cro, allow a
slight benlding of tile rules.

§ 2.2.3 Impli'miuniaion ofa ivial (wnslraiint Ilanguage 49

(dbftype constraint-type (ctype-name ctype-vars (ctype-rules'()
(format stream "(Constraint-type -S)" (ctype-name constraint-type)))

(dertype constraint (con-id con-name con-ctype con-values)
(format stream "(~@[-S:-]S)' (con-name constraint) (con-id constraint)))

(defmacro create (name type) -(setq ,name (gen-constraint ,type ',name)))

(defun genp-constraint (ctype)
(require-constraint-type ctype)
(let ((c (make-constraint))

(n (gen-name (ctype-name ctype))))
(set? (coli-id c) ni)
(set n c)
(set? (con-name c) name)
(setr (con-values c) cyo
(setr (con-ctypes c) cyu

(forlist (var (ctype-vars ctype))
(gen-cell var c)))

L TABI 1; 2-3. Cnsraints and ('onstraiimt-Tr pts.

(defmacro the (x y) -*the ',x ,y))

(defun *the (name con)
(require-constraint, con)
(or (lookup name con) (lose -~S has no part named -S." con name)))

(defun lookup (name thing)
(require-constraint tihing)
(do ((names (ctype-vars (con-ctype thing)) (cdr names))

(cells (con-values thing) (cdr cells)))
((null names) ())

(and (eq (car names) name) (return (car cells)))))

TABn 1: 2-4. Referring to Pins of t ('omislrinjt Dceicc.

1 o ok up merely searches (lie list (if parameter namels in tie constraint-type oftile constrain tt, and if
the gi cii namec is Coun id it retti ris tile corresponding cell.1

2.2.3. FEquafing of(Cells Links 'Ilieni and1(Propagmels Vailues

In §2.2.1 we saw (hat cry newly created ccll has its ownl associated repository, and so is it

rnjnimal-si,.c node. More generally, ofcoturse, every ccll must always hiave a repository, which may

be shared with other cells to fornm a larger node.

50 0 II Ii I I'WO lROP.\(iA I[ON

The cons train t- type ADDER?

ADDER-RULE-19 ADDER-RULE-21

lThe symbof tE4 two iymbot CELL-44 Tie hymolCEt.4

A~ :B

§ 2.2.3 Imnplemntation of a Trivial Constraint language SI

(defun (celli cel]2)
(require-cell ceill)
(require-cell ce]l2)
(or (eq (cell-repository celli) (cell-repository cell2))

(let ((r (make-repository))
(cbl (node-boundp cell))
(cb2 (node-boundpi ce 1112))

(setf (rep-boundp r) (or chi cb2))
(seti (rep-contents r) (merge-values ceill ce"1l2))
(setr (rep-cells r) (append (node-cells cell) (inode-cells cell2)))
(let ((newcomers (if cbl

(if cb2 1() (node-cells cell2))
(if cb2 (node-cells celi) ())

(dolist (cell (rel}-cells r))
(setr (cell-repository cell) r))

(dol 1st (cell newcomers)
(cond ((cell-owner cell)

(ctrace "Awakening -S because its -S got the value -S."
(cell-owner cell)
(cell-name cell)
(rep-contents r))

(awaken (cell-owner cell)))))
'done))))

(defun merge-values (cellt ce]lZ)
(require-cell celli)
(require-cell cell2)
(let ((vail (node-contents ceill))

(va12 (node-contents cell2)))
(cond ((not (node-boundp celli)) val2)

((not (node-boundp cel]2)) vall)
((equal vail val2) vail)
(t (lose 'Contradiction between -S and -S." celli cell2)))))

(detun awaken (con)
(require-constraint con)
(dolist (rule (ctype-rules (con-ctype con)))
(funcall rule con)))

rwwri. 2-5. Fqualiflg oft Cells anld Propagation of Valties.

Tfable 2-5 shows how two cells are equated. 'lh fnction == akes two Cells, and if' they

,tre not yet equivalcnt it c reates a IlCw commion repository for thcm. 'l'his repository will have a

value if eiher of the inipt nodes had a v.altue. Moreover, if both nodes had values, thcn when

they arc eqttated the values mnust coincide. T[he contents f'or thle nlew repository ate calculated by

the fuinction mer'ge-values, which merely decides whlich node's value to ttse, and if both have

values checks that they arc equal. signaling at conltradictioni otherwise.9 T'he new repositry's set

of cells is the union (which mulst in fact be a disjoint unlionl) of the sets oif cells for the two cells'
repositoiries. '['he inew'toitlers are defined to be those cells which formerly had no value but will

9, When new features arc addcd to (hc language later. merge-values will lia~e the more complicated task of
mcrging Iwo struiClurcd object.%. taking somec attributes from each value.

52 CIIAxPII:RT 'IvoIROt' \CA I ION

(declare (special *tracing*))
(setq *tracing* t)
(deriin trace-on ()(setq *tracing* L))
(defun trace-off ()(setq vtracings ()
(defmacro ctrace (string .args)

and -traing* (formnat t " l1(1 string G@args)))

traI 1ABLE 2-0. A Siniplv Fracing NMcchaniisin.

nlow haws a \alue because of thc niew% eqtlikalence. There can he ne %comiers onlN if exactly one
no de I ud I a lut, in II caise thie cells of the ot her node ar Il e nekcs i ters. After all Lte cells

ins oled ale hooked up toile hct e rlepoilor n, (lie oss net- (if any? of each cell is akened. Hih

Function awaken ss hen applied to at CoINstri it runIs all (lie rtules associated ss ith that constraint,
telling each Ile %k hicl constraint instane Asas involved (because thle rules of a ContlSMiut-tY pe arc
shared amlong all instances).

The c t race statemrent is included purely fo r debugging purposes. It prints at forimatted nies-
sage sot that the inner workings of thie systemn carn be traced. [he I isi, code for c t rac e is shown
in) Table 2-6. The argumnlts to f o rinia t are rather cryptic. btut an ohs ions feature of the c t rac e
facility is that it canl be turned ofl The Functions trace -on and trace -of f set and clear tile
global tracing flag.

2.2.4. Coilo raints Are Implemeinnted as Sets of ideis

I he implementation of primitive constraint devices is best seen by example. Table 2-7 con-
tains thle I I!;P code for the devices whose symbols appeared in 1-igUre 2-1. Fach is expressed in
ter-is of a special miacro) do f p r iin:

(defir im name pin-naines
(input -pi.I to/c-budy-I)
in/;ul-pins- 2 ndu/- bodv- 2)

(input-p/ax-it rule-body-n))

This defines at constraint-type called naame which has paramreter nanies pin-names. Each rule has a
list of inputi pins and at piece of code to execulte when those pins all hiave \;aLues. (This -estriction
is simply aI con venient filter which all rules desire. Recall that thle function awakeni gi vent in '['able

2-5 rtuns all the rules for at constraint. We shiall see that do f p r im provides (lhe code to check for

tn Aganin. whcri (he tj- of merue-valIues witl be to mergei two sluicturcd objccts. tlie clls oC b7odi nodes may
be newconicis. We witi sce this later,

It 'Ibis code is not %ritnce in bhe constraint tangUage. but in the iplementation laniguagec: thcse defuntions arc for
Primitive coliiniis. I alcr Ae shll~t considter thc defiition of iion-primiitivc constraints.

§ 2.2.4 lmpletnentaulio ofa Trivial Constralint language 53

(defprin adder (a b c)
((a b) (setc c (+ a b)))
((a c) (setc b (-c a)))
((b c) (setc a c- b))

(derprini multiplier (a b c)
((a) (and (zerop a) (setc c 0)))
((b) (and (zerop b) (setc c 0)))
((a b) (setc c (* a b)))
((a c) (and (not (zerop a)) (zerop (\c a)) (setc b IIc a))))

((b C) (and (not (zerop b)) (zerop (\c b)) (setc a IIc b)))))

(derprim inaxer (a b C)
((a b) (setc c (max a b)))
((a c) (cond (<a c) (setc b c))

()a c) (contradiction a c))))
((b c) (cond ((b c) (setc a c))

(>b c) (contradiction b c)))))

(derprim minner (a b C)
((a b) (setc c (ini a b)))
((a c) (cond (>a c) (setc b c))

((a c) (contradiction a c))))
((b c) (cond ()b c) (setc a c))

((b c) (contradiction b c)))))

(derprim equality (p a b)
((p) (or (= p 0) (= p 1) (contradiction p)))
((a b) (setc p (ir (= a b) 1 0)))
((p a) (and (~p 1) (setc b a)))
((p b) (and (=p 1) (setc a bf))

(derprim gate (p a b)
((p) (or (= p 0) (= p 1) (contradiction p)))
((a 1)) (or (~a b) (setc p 0)))
((p a) (and (=p 1) (setc b a)))
((p b) (and (~p 1) (setc a b))))

TAii2-7. Inpkeniceitatiun of the Constraint BloxS of Figure 2-1.

each input ccll having a value.) Thus we implement our non-directional constraint boxes in termns
of a directional language stuch as LISP.

Consider the definition of the adder constraint. It specifies three rules. When any two values
arc known, thc third can bc comnputed by dhc rulcs c .- a + b, b +- c - a, and a +.- c - b. c

formi (setc c (+ a b)) means"set cell c to the valuicof (4- a b)".

Look now at thcdefinition of multiplie r. It hasnries which comnpute new valucs condi-

tionally. For example, a value for c can be computed Fronm a alone provided that a is zero.
Similarly, computing b fromi a and c is conditional onl being alble to express the result as an

integer (that is, the rema~inder (\ c a) inust be zero). The t.si, value produiced by the rule-body

comptation is ignored-, only the se tc: construction specifies new values for cells.

54 ClI..,*ll~t TWo PR~OPAGATlION

Next reflect Upon the detinition or maxe r. Wheon a and c arc known, then as wc saw in §2.1
there arc three cases for conpifing arc rnax,.a. If a< c thenl b *-- c; if a= c Ohcn b is Unik now n:
and if a > c then it is not at iattcr of computing b at all: it is simiply a contradiction, a violation
of' thc constraint. 'Ihis is all expressed in thc second role for maxe r(thc case a = c iniplicitly
holds if both cond tests faiil). '[he formi (cont rad ict ion a c:) signals that a contradiction
has occurrcd. and that the %altics of cells a and c arc at fault.

IDigic 'ii.Tl c re is- iolewr stpcoci,'iii ira tegy Mu ich doeis not reqiire the axse oif set c at all. which
"~A use1d inI the cowlatraint s. strni reported in ISiceic 19791: that paper did not1 describe thc tcchiiiqte.

hc~ cr. and tlmcrcfo'c it iN outlinicd here. It is assumiled thatl cdh ule coi iptes at valuc for exactly
one cell. andl [halthiw, Ilaic is ci nipitcd b\ [1w iic-hod\: thus the iS' Value (ifth ruwichbi Id actially
isV tiscLI. Faich iii c is tIic iire deliiicd b\ a list of input cells, a 'tilc- od%. and an O~itapLit cell. There
arc 1%% a globial I ariahilcs *l1os e* aiid * d ism is s*. Mul sc vamltics arc dlist i a-,t isimabli: fr-om any kalue
ni rinal l\ comnpi icd by aI rulIe. If t hc utInc of a rikI- 1)dy is that of *lo s e. then at contr ad iction is
Signalled (the assumiption being that it is prcisely all the iipt cells that arc at fault). If the valuec is
that of * d ism iss*,. then noi \aluie is spccificd Into(the out1put Cell. The dcfinition of maxer using this
tcchniquc wouild be:

(defpm'im maxer (a b c)
(c (a b) (max a b))
(b (a c) (cond ((a c) c)

(>a c) *lose*) h
(t *dismiss*)))

(a (b c) (cand ((b c) c)
()b c) *lose*)

(t *dismiss*))))

One advantage of this tcchniqiic is that onc is rcquiircd to covcr all cases explicitly. On the other
hand, it rnay rcqUirc dulplicaItion o~f codc if thc samie tests are uised in rules for sctimg niorc than one
cell (which. however, is not the case for the constraints of Table 2-7). Also. each ruile js required to

'p111nouptpn ~ k o om uc a be irrelevant. Consider the first rulc (of equ aIi ty in

Table 2-7. fir cmaumpic: it icrcly performs a consistency check onl the pin p. It never coimpumtes a new'
VALtie: the oi11y piissihlc iiucontcs are coilt radictaon or dismnissal.

This tcchicqic is uiscfuil iti some situiations. howevcr. and we will use a variant of it in at later
inmplemen tat ion. Fior niow. hiowe vci. thc usc of set c scms iii e inliti ctivc and intu~i i ey appeal ing.

Note that the two valtics *d ismi ss * and *l1ose* of this tchnique may be interpreted to niean

..L and T. ext ra valueis adjoidned to the va, bc doin ii to reprcscent tinder- and over-cl nstrai ned values.
(Enid oj* (igr-ession.)

'The I SP' macro definition of the de fp rim construction (Tablc 2-8) is rather involved, but

its effect is siraightflorward. Ic declares nanc to be at global I tSi, variable, and sets that variable

to a newly created constraint-type data structure. lime nanie and pin-naines are installed iti this

struicture, and then the rules are defined uIsing the def i'ule constnmtct. The def rule construct

arranges for the I ISP variable *me * to be bound to-the conmstraint for which this rile is being

invoked (the constraint which wats awakened). The code for each rile binds variables namned

pin-naine- cel 1 for each pin of the constraint, and then checks to see that tie input pins for that

§2.2.4 inpleiiwiiiatioii ofa Trivial Constraint Language 55

(detmacro defprim (name vars rules)
*(progn 'compile.II

(declare (special ,name))
(setq ,name (make-constraint-type))
(setf (ctype-name ,name) ',name)
(setf (ctype-vars ,name) ',vars)
,@(Earl ist (rule rules)

*(defrule ,name
(let ,(forlist (var vars)

,(,(synibolconc var "-CELL") (the *var *me*)))

(and ,@(forlist (var (car rule))
,(node-boundp ,(symnbolconc var "-CFr11")))

(let ,(forlist (var (car rule))
,(,var (node-contents ,(symbolconc var "-CLII"))))

,@(cdr rule))))))
'(,name primiitive)))

(del'macro del'rule (typename .body)
(let ((rulename (gen-nanie typaname 'rule)))

'(progn 'compile
(push ',rulenarne (ctype-rules ,typename))
(defun ,rulenamie (*me*) @§body)
'(,typename rule)

TAII2-8. Defin ition of Prim ifi e Constraints and Rulles.

(progn 'compile
(push 'equality-rule-23 (ctype-rules equality))
(defun equality-rule-23 (.me.)

(let ((a-cell (the a .me.))
(b-cell (the b .me.))
(p-cell (the p .me.)))

(and (node-boundp a-cell)
(node-boundp b-cell)
(let ((a (node-contents a-cell)) '

(b (node-contents b-cell)))
(setc p (ir (= a b) 1 0))))))

,(equality rule))

TAni~i 2- 10. Expandcd Second Rle of thc equal i ty Constraint.

ruile arc hound. If so, then the rule-body appearing in tie def p r im construct is cxecutcd. Table 2-
9 shows tllc lSP code into which dile call oil def pr im fllacE(for adder expands.

The def rul e constru~ctionl sirnply generates a tldfll for the rulc, and defines a I IS11 function

by that name. Thbis fLinlctiofl takes oneC argumnent, a constraint, calls it *me*, and executes thc rule

code. 'Ihc name of the fuinction is also addcd to the set of rulcs in thc constraillt-typc. Table 2-10
shows the LISP code inlto which the seconld de f rul1e in 'able 2-9 expands.

Tablc 2-li shows tile imiplemientation of contradiction and setc. An invocation of
contradiction expands, for examiple, as:

56 CllAPTElR IWO IPROlAGA]IION

(progn 'compile
(declare (special equal ity))
(setq equality (make-constaint-type))
(setf (ctype-naine equality) 'equality)

(setf (ctype-vars equality) '(a b p))
(derrule equality

(let ((a-cell (the a *me*))
(b-cell (the b *me*))
(p-cell (the p *me*)))

(and (node-boundp p-cell)
(let ((p (node-contents p-cell)))

(or (= p 0) (z p 1) (contradiction p))))))

(defrule equality
(let ((a-cell (the a sine.))

(b-cell (the b *me*))

(p-cell (the p *ine.)))
(and (node-boundp a-cell)

(node-boundpi b-cell)
(let ((a (node-contents a-cell))

(b (node-contents b-cell)))
(setc p (if (z a b) 1 0))))))

(def rule equality
(let ((a-cell (the a *me.))

(b-cell (the b .me.))
(p-call (the p .me.)))

(and (node-boundp p-cell)
(node-boundp a-cell)
(let ((p (node-contents p-cell))

(a (node-contents a-cell)))
(and (= p 1) (setc b a))))))

(def rule equality
(let ((a-cell (the a sine.))

(b-cell (the b .me.))
(p-cell (the p .me.)))

(and (node-boundp p-cell)
(node-boundpi b-cell)
(let ((p (node-contents p-cel))

(b (node-contents b-cell)))
(and (= p 1) (setc a b))))))

'(equality primitive))

-rAwll 2-9. Fxpandcd Dcfiniuion of the equalI i ty Constraint.

(contradiction a C) .-+ (signal -contradiction .me. (list a-cell c-cell1))

T~he function Si gnal -cont radi ct ion cauJses an error, and pr~nts informlationl as to the source

of thc contradiction.

TheC se tc construlct is also imlpIlmenlted as a I ISP fllacro. A call to se tc expanlds, for

examlple, as:

(setc c (+ a b)) (prncess-setc *Me. 'c c-cellI (+ a b))

§ 2.3 Sample Lxecuion ofa Constrin Program 57

(dermacro contradiction wars
,(signal-contradiction *me* (list ,@(rorlist (v wars) (symbolconc v "-CELL")))))

(derun signal-contradiction (constraint cells)
(require-constraint constraint)
(lose "Contradiction in -S-@[among these pins: -:{-S=~S~:t, ~-"

constraint
(forlist (cell cells)
(require-cell cell)
(list (cell-name cell) (node-contents cell)))))

(detmacro setc (cellname value)
• *(process-setc *me. 'cellname ,(symbolconc cellname "-CEiL") ,value))

(defun process-setc (*me* name cell value)
(require-constraint *me*)
(require-cell cell)
(ctrace "S computed the value -S for its -S." *me* value name)
(= cell (constant value)))

TAIBi: 2-11. Implementation of contradiction and setc.

The first and third arguments to process-setc are provided purely for the sake of thec ct race

operation. The setting of a cell could be performed by torcibly inserting the value into the cell,

but it is easier simply to create a constant cell containing the value and then equate it to the cell

to be set. It is inefficient, in that an extra repository is created by constant and another by =.

However. it lets the existing machinery in == do all the work of checking for contradictions. (We

will fix this inefficiency in the next chapter.)

2.3. Sample Execution of a Constraint Program

Here we consider an interactive session with our trivial constraint lalguage. We shall construct

the temperature conversion network of Figure 2-2. User input appears in lower case, and the l.ISP

value produced by this input appears in upper case. fle c t race statements in the code produce

comment lines beginning with " ; I".

First we create instances of the constraint devices we shall need, in this case an adder and two

nltltipliers. Thie value returned by create is the data structure for tile constraint, which prints as

the unique name of the constraint, surrounded by angle brackets (thanks to the printing code which

appears in the definition of tile const ra int data type in Table 2-3).

(create add adder)
<ADD: ADDER-20>
(create mult multiplier)
<MULl :MULTIPLIER-24)
(create othermult multiplier)

58 CIIAVIIK IWO 13ROPAGATl'ON

(OrHERMULT :MULTIPLIER-28)

The un iquc number (appcndcd ly the lisP' function g en -name) is incremented by ibur each time
because for cach of these constraint instances three cells are alsoA genierated to serve as pins. We can
refer to at pin by usinig the the construction.

(the a othermult)
<CELL-29 (A of OTHERt4ULT): no value>
(the b otherinult)
(CELL-30 (B of OTHJERMULT): no value>
(the c othermult)

<CELL-31 (C of OTHERMULT): no value)

The ability to do this interactively is not really part of our defined constraint language: it is,
however, a decided convenicnce in interacting with the system. The faict that generated rnames
coiitain numbers in increasing order is also irrelevant to the defined computational abilities of dic

system. buit do aid in understanding in what order certain actions happen to occur. Notc that when i
a cell is printed, thc uinique name and also the pin name and owner are printed, and also dhe
valuie if any (the code which does this appears in Tablc 2-I1). We did not define any input/output
operators for our language, but the ability to examine cells interactively in this way will allow uts to
see the results of the computation. 1

Next we declare that we will need two global variables fah renhe it and cen t igrade.

(variable fahrenheit)
<CELL-32 (FAHRENHEIT): no value>
(variable centigrade)
(CELL-33 (CENTIGRADE): no value>

Now each cell must have a rep)ository. We can examine the repository of a cell.

(cell-repository rahrenheit)
(Repository for CELL-32>

We now wire the network together. We begin by equating fah renhe i t to the c pin of the adder
add.

(=- fahrenheit (the c add))
DONE

12. All of these remarks of course have little to do with the designi of a conslraint language as such. Rathecr. they
are intended to %how how a toN system can hc imbedded in a larger systm (in this case a list syslcm) with a
millinilim of work 10 gel it otf' the ground just enough to exhibit a principle, without basing to re-implemcnt a host
of Iris al details (such as 1/0) IF aria ing ror the intcrprctcr of' the coni!mini Iangiiaec to he that of I.tSP, and
that the fomnis cif the conlstraint language arc simple cetain evaluablc LISP Ij-oins. then when initeracting with the
sNstem we can c' atuatc coswiaini foyms or I tSP formns at will. More abstractly, at any, time we may shift freely from
language 1o MCta-Ian1gUage and back.

§ 2.3 Sample l.xccution ofa C'onsiraint Program 59

Ixamination of the repository of tie cell fah renhe i t reveals that it has been linked to another

cell ce I I-23. This is die name of a cell which turns out (not %'cry surprisingly) to be the c pin of

adde r-20, which is also called add.

(cell-repository fahrenheit)
<Repository for CELL-32,CELL-23>
cel1-23
<CELL-23 (C of ADD): no value>
(the c add)
<CELL-23 (C of ADD): no value>
adder-20
(ADD:ADDER-20>
add
<ADD:ADDER-20>

Specifying a constant creates a cell with no owncr and name "?.

(constant 32)
<CELL-34 (?): 32>

We now connect this constant to the b pin of the adder. I

(== (the b add) cell-34)
;jAwakening <ADD:ADDER-20> because its B got the value 32.
COME

The ct race statement in the definition of == (sec Table 2-5) printed a comment indicating that

one pin got a value and so all rules were being run. However, no rule of tie adder constraint type

can do anything with only one input.

If we examine the b pin of add we can see that it indeed also has the value 32,

(the b add)
<CELL-22 (B of ADD): 32>

Let us without further ado wire up the rest of the network of Figure 2-2. Two more ctrace

comments are produced when the constants 5 and 9 are wired tip.

(= (the a add) (the a othermult))
DONE
(zz (the c othermult) (the c mult))
DONE
(z: (the b othermult) (constant 5))
;JAwakening <OTIIERMULT:MULTIPLIER-28> because its B got the value 5.

13. Of course, this sialcment is not properly part of Ilic conslrairit language, hut a Inixlure (if the constraint language
and ils nicla-language .IS1 (because [he variable ce 11-34 is pan of Ihe rmcta-language- -indeed the very fact that
we know of the exislencc of that name indicates that we have gone outside the constraint language and examined
the inlernals of the iniplcincnlalio|!).

I

60 Ci lAly'I:R IW0 I'ROI'.GA I ION

DONE
(== centigrade (the b mult))
DOME
(== (the a mult) (constant 9))

DONwaEng (IULT:MULTIPLIER-24> because its A got the value 9.

DONE

TIhe network, now completely \k ircd, call bc used to perform at computation. I lere wc will try
die compuation of Figure 2-3.T'he cell cen ti grade is equatedto the constant -40.

(~centigrade (constant -40))
:IAwakening (MULT:MULTIPLIER-24) because its B got the value -40.
:I(MUL1T:MULT!PLIER-24) computed the value -360 for its C.
;IAwakening (OTtERMULI:MUI-TIPLIER-28) because its C got the value -360.
Ij<oIHERMULT:MULTIPLILR-28> computed the value -72 for its A.
:IAwakening (ADD:ADDER-20> because its A got the value -72.
;K<ADD:ADDER-20> computed the value -40 for its C.
;IAwakening <ADD:ADDER-20> because its C got the value -40.
;I(ADD:ADDER-20> computed the value -72 for its A.
:I<ADD:ADDER-20> computed the value 32 for its B.
;V<ADD:ADE?.-20> computed the value -40 for its C.
;IAwakening <OTHERMULT:MULTIPLIER-28) because its A got the value -72.
;f<OTIiERMULT:MULTIPLIER-28) computed the value -72 for its A.
;j(OIHERMULT:MULIIPLIER-28> computed the value 5 for its B.
;I(OTHERMULI:MULTIPLIER-28> computed the value -360 for its C.
;I(OTHERMULT:MULTIPLIER-28) computed the value 5 for its 8.
;I<OTtIERMULT:MULTtPLIER-28) computed the value -360 ror its C.
;lAwakening <MULT:MULTtPLIER-24) because its C got the value -360.
;I<MULT:MULTIPLIER-24) computed the value 9 for its A.
;j<MULT:4UL-TIPL[ER-24> computed the value -40 for its B.
;I<MULT:MULTIPLIER-24> computed the value -360 for its C.
DONE

Note that each constraint device here has computed new values ficr its pins. incluiding those pinls

wI' r originally provided input values! For example, given a and c the adder coniptited at value
for b--but once b wats in hand, it couild hie used with a to conmpuate c, and with c to compuLte
a. Nothing detects the faict that dlie adder itself computed the value for b. On the other hand, the
process docs not iterate indefinitely (at common hug ned hnm pletn thsIr o hn!

because == does not immn any rules whien a %alkue is equated to at Cell Mhich aIlread has at valtle
(because then the set oif newcomers is emipty).

If we now examine the cell Ifahrenhei t, we see that indced it has acquired thle value -40.

fahrenheit
(CELL-32 (FAHRENHEIT): -40>

§2.3 .Samuple l'xcciiion of a ('onslinI Program 61

5 7 5 35 3

A 77A

AY

MAX CMAX MAX

B B B

contradiction!7 unknown

(a) (b) (c)

F(;trF?-8. Opcration (if the maxer (' nstr.Iin..

Suppose now that we attempt to set fahrenhe i t to 32. When me rge-val ues gets die

values -40 and 32, it finds that they arc incoml)atible, and invokes I ose.

(== faltrenheit (constant 32))

>>ERROR: Contradiction between <CELL-32 (FAHRENHIEIT): -40>

and <CELL-51 (?): 32).

As another toy example to show off" the con t, rad i ct i on mechanism, consider a maxe r

box with its a pin equated to 5. We will take ihbce stch)boxes and qu;jte their c pins to 7. 5. and

3, respectively.

(create ml maxer)
<Ml :MAXER-68>

(create m2 maxer)
<M2 :MAXER-72>

(create m3 maxer)
<M3 :MAXER-76>

(= (the a ml) (constant 5))
:jAwakening <MI:MAXER-68> because its A got the value 5.

DONE
(== (the a m2) (constanit 5))

;IAwakening <M2:MAXER-72> because its A got the value 5.
DONE
(= (the a m3) (constant 5))
;jAwakening <M3:MAXER-76> because its A got the value 5.

DONE

From the valuesa 5 and c = 7, ml can deduce b 7. (Sec Figure 2-8a.)

62 CHIIIR WO IZOPAGA I-ON

(~(the c ml) (constant 7))
:lAwakening <NI:MAXER-68) because its C got the value 7.
IJ<MI:MAXER-68> computed the value 7 for its B.

;lAwakeriing (MI:MAXER-68> because its 8 got the value 7.
I(NMl:MAXER-68> computed the value 7 for its B.
I(<MI:MAXER-68> computed the value 7 for its C.
;j<MI:MAXER-68> computed the value 7 for its C.

DONEr

Note thait ..dues were comiputed for b and c twice each. This is because in this imlplernlntation
u hen it alue is rececived on aiiy pin. all rules are fired. Since two pilns got %alues. alli rules atrc fired
t~k ice. It all settles downi in the end. but is a sour1ce Of ineCficicu)cy.

Wheni a = 5 and c =5. no specific value can he comiputed for b. All that is known is that
b < 5. (See Figure 2-8b.)

(=(the c m2) (constant 5))
;lAwakening <M2:MAXER-72> because its C got the value 5.
DONE

When a = 5 and c = 3, we have an inconsistent situation. (See F~igulre 2-8c.

(~(the c m3) (constant 3))
lAwakening <M3:MAXER-76> because its C got the value 3.

>>ERROR: Contradiction in <M3:MAXER-76) among these pins: A=5, C=3.

'ie inconsistency has caused a fatal error. (Later we will see how stuch errors can be useful
rather than fatal, and can cause tie systemi to search For ways to resolve the problem.)

2.4. A Difficulty with Division

There is an inteiltionAl peculiarity in our definition of the inu 1 t i p Iie r primnitive in Table 2-
7. which is that ifa division does not corne out exactly it siniply fails to comipute a result. One mnight.
argue that since we have defined the data objects of our- language to lie tile integers, then it is an
error to try to divide, say. 71 by 3. because there is no ob~ject n such that 3 X n = 7.

Suppose tilat we construct another temper-atureC conversion nletwork as in §2.3, just before
we assign the value -10 the centigrade. L et uts see what hlappen% if we instead equate
cent igrade to the constant 37.

(== centigrade (constant 37))
lAwakening <MULT:MULTIPLIER-100> because its B got the value 37.
;f(MULT:MULTtPLIER-1OO) computed the value 333 for its C.
lAwakening (OTFIERMULI:MULTIPLIER-104> because its C got the value 333.
;lAwakening <MULT:MULTtPLIER-lOO> because its C got the value 333.

§ 2.4 ,A Di-fficuliy willi Division 63

FAHRENHEIT CENTIGRADE(nflgA(nothing!)

CAD B _C 333 C.3

B I'rTHERMULT ML

FIGURFi 2-9. A TCipcllciLtirc ('onvcr sion Which "Failed".

;I<MULT:MULTIPLIER-100> computed the value 9 for its A.

;J<MULI:MULTIPLIER-100> computed the value 37 for its B.

;I<MULT:MULTIPLIER-100> computed the value 333 for its C.

DONE

It seems that mul t perfornied soic useful work, but othermul t did not, and add was not

even awakened. (See Figure 2-9.)

fahrenheit
<CELL-108 (FAHRENHEIT): no value>

Indeed fahrenhe i t has not had any value computed for it.

(the a othermult)
<CELL-105 (A of OTHERMULT): no value>

(the b othermult)

<CELL-106 (B of OTHERMULT): 5>

(the c othermult)

<CELL-107 (C of OTHERMULT): 333>

The constraint othermul t has values for b and c , hut cannot cornpute a value for a because

the division 333/5 is not exact. However, we do find it useful in mnathematics to extend the

integers to the rational nunibcrs, and say that there is an objcct which represents the result of this

devision. even though we don't have any better way to represent it than as "333/5". that is to

say. "that object which is the quotient of 333 and 5". If we examine the state of the network in

Figure 2-9, we can scc thai (his quotient is represented b), the nrework ilvlJ. considered as a data

structure. Moreover, the network represents the fact that fahrenhe i t is the diffcrence between

this quotient (whatever it is) and 32.

64 CITIA TIr R TWO PIROI'AGA I ION

P1 P2 P3

FI(JUIF .)-11. ('tl ar~tlitni Thrcc Puints to hc Ftl lll Spaced (1).

we c''ttld inltroduce rational nt imhers a.s a priniiti\ c data t' pe. Suich ;tn jitopletit.Lcilon \ottid

presumiltahly use a I ISP data Sta'ICt IIC to hl I the I nIt, lC It r M01 3d deI no11naitor of; r tlni tl (LI tlitlher.

and pro\ ide l ISi finctions For manipulating such data objecLs. pro\ iding prinitik Cs for rational

aridinietic. 'his would bc a strange mo\ e at this point. ho\ke or. ,ts the data structure i nicel, copies
what dhe constraint network represents anyway: a data structurc (the multiplier constraint, con-

sidered as a division box) with two known valutes (numerator and denominttor). I he te l "rational

arithmetic" is a misnomer, for it is actually a curious comhintion or itrihnictic and ilgehra--and

diths far our language, which can propagate kalues within the network hut cannot aigmenl the

network, encompasses only arithmetic.

'here is one more way in wIhich local)ropagation can fail to computte a result. If1t constraint

netwuork contains cycles, then propagation may not be able to make progress. Thc dillicutlty is

that such a network expresses a set of simnultaneous Cqtuttiuns Which nIust be sol ed by algebra.

Consider the network in Figure 2-10. There ire three variables pl. p2. and p3, intended to
represent the positions of three points along a r axis. The network constrmns the thrce points to

be equally spaced; that is, p2 is midway between p I and p3. The network actuitll\ expresses the
first description of the last sentence more closely: the two adder constraints determine the spacing
between adjacent points, tnd then the two distuces are equated.

p2 - p1 p 3 - p2

The second description corresponds more to the formula

p2 -= pl, +_p
2

Yet a third formulation is that the spacing between the endpoints is twice the spacing between

either set of adjacent points.

p3 - p1 2 X (p3 - p2) 2 X (p2 - pI)

...

§ 2.5 ,A I)fiicu/ly Wi/h Division 65

P1 P2 P3

F IGURF ?"11. Conblstraining 1hrec Po~int~s to he Fqtrffl) Sp~aced (61.

Pi P2 P3

FIGURE 2-12. A Rcdtndant Ncl\%ork for -qtudIll, Spacing Three PoinLs.

I lowever, the network expresses only the first formulation. Givcn either pair of adjacent points, the
position of the third is easily computed: one adder calculates the spacing between them, then the

other adds or subtracts this spacing firom the midpoint tvo locate the endpoint not given. I Iowever, if
the two endpoints are givcn and not the midpoint, neider adder can compute anything.

Similarly. if we were to use just one me'sion of the third formulation (see Figure 2-11), then
gi en p 1 and p2 it would not be possible to conptute p3 by local propagation.

One way to enable any point to he compted given the other two is to use a redundant net-
work expressing multiple ways of viewing the problem [Sussman 19771 (see Figure 2-12). Another
way is simply to use an entirely different network, such as the second fotirlation above (see

Figure 2-13): however, deriving this from the first network requires some non-trivial algebra, and

66 CI IAPI FR TWO PROPAGA IION

P1 P2 P3

FiGuiw 2-13. A ('clc--rcc Nciw rk fbi Fqwidly Spacing Three Points.

indeed a new concept: the other networks express direct spacing requirements, whereas Figure 2-13

uses the concept of "a% eraging the positions of de endpoints".

2.5. Summary of the Trivial Constraint Language

Our little language illustrates the principle of computation by local propagation, with the

direction of propagation determined dynamically as needed. It certainly leaves much to be desired:

T [he data objects arc limited to the integers. We arc used to having other kinds of objects in

programming languages. including compound objects such as arrays.

* There is no abstraction capability: the language is "flat", which is to say that we can build very

large networks but cannot in any way encapsulate portions into modules. We would like to have
something analogous to subroutines.

* A given network can be built and then used once, but then must be thrown away. For example,
in §2.3, after using a temperature conversion network to convert -40 C to -40' F, we could

not then use the same network to convert 370 C-we got a contradiction because the network
was already "used up". This means we cannot use a constraint network in a dynamic manner

to track a changing input-and this would be one of the most useful attributes of a constraint
language, if we could only implement it.

" The mechanism)f local propagation can fail to compute a result for any of several reasons.

A relationship may be mtiltiple-valued (as arcmax. x), and there is no good way to choose

among the possibilities. A relationship may "have a value", but one which is not really in the

domain of the language (for example, rational numbers in a system providing only integers).

These are both local properties of a single constraint. It is also possible that the difficulty is

global, involving cycles ir the network, and cannot be handled by a local technique. This can be
handled by algebraic techniques, which involve transformations of the network, which for now

is outside the computational scope of our system.

§ 2.5 Summary of he Trivial Constraint Language 67

" When contradictions occur (for whatever reason-re-usc of a network, a mistake, etc.) there
is presently no easy way to determine why the contradiction occurred. We know what ie
difficulty is locally (for example, division by zero), but we do not know (he global causes. A
related difficulty is that %hcn something fails to be computed, as in §2.4, we don't know why
that happened either.

" The systen is computationadlly inefficient. It often recomputes the same value many times.

We will deal with all these difficulties in one way or another. To deal with all at once would
introduce oerwhelming complexity of detail; thierefore we shall examine cach feature separatcly
before combining them.

I.

The best of the worst is fill alive.
Tho' vt lrst is nt at first-

No livery may deliver ine
An alier liverwurst.

-Walt Kelly (1952)
I Go Pogo

Chapter Three

Dependencies

W IIIN A I)ICISION IS MAIDE, we Vry oftCn wish to ask hc person who made it not only,

"What is the result?", but also. "Why is that so? Why didn't you choose something else?

What factors went into your decision?" This is particularly true of design deci.ions in engineering.
There are several reasons for asking such questions. If the result is not obvious, or by itself doesn't

carry enough information, the die structure of the process which dcri~cd it may shed more light.
If something goes wrong later, we need this information to determine how to fix the problem; we
need to know what can be changed without affecting the result, or what to change to change the
result. More generally, if several decisions have been madc, and one must be altered, one can do
this with minimum effort if one can determine parameters of the decision which will not affect
others. Another possibility is that no decision was reached. In this case one wants to know why, and
what additional facts are needed to make a decision.

Now all of this is especially true of computers, which make so many decisions and conputa-

tions so rapidly that it is very ditlicult to determine what happened (or didn't happen) after the fact.
The entire art of analyzing post-mortem core dumps is devoted to answering the questions outlined
above. The notion of an audit trail (conputcri/cd or not) is also intended to permit the reconstruc-
tion of the computational process. It would be much simpler if programs were to keep track of the"

reasons for their comnputations from the start. Such programs could be held accountable for their
actions, and required to explain themselves on request.

In this chapter we will lter the system of Chapter Two to record the history of the computa-

tion as propagation occurs. Facilities will be developed for extracting this histor from the network

in a useful form.rI

68

,~~~ . ',t . -,. -' l L, -' . -- h'.,,.. .,. ; _. , . . , -

§ 3.1 Responsible P'rogramns 69

3.1. Responsible Programs

It is not at all difficult to augment our trivial constraint system to record reasons for each

comnputational action. Wc call such reasons clcptlencies. because they indicate for each quatity
on what other quantitics its derivation depends.

3.1.1. D~epenidency InforialtIion Can lBe Used to 1,lKili (omputations

Ie LI upse~5 that we hawe been gi~cn aI temiperature conversion network with which %e are
unfamniliar, but we have been assuired that it correctl constrains two %I' ibles called Fahirenhe itI
and centigrade. We equate centigrade to -40, then ask for the %alue of Fahrenheit
and are told that it also is -40.

FahrenheitI
(CELL-35 (FAHRENHEIT): -40>

We don't trust the calculation (perhaps wc suspect that there is a "Short Circuit" bCtweenl thle

f ah renhe i t and cent i g rade variables-pcople sometimes make that soit of mistake!). WeA
(skwhy Fahrenheit)i-0

(Thy valuee -0isn) L-5bcueta s once o(H D
;had e <A40Ais)E LL-35 copuecitushing rul e d ADDER-RULE-ID)
fromA:DE -2 > (A) ute -72 using2 ruB) ADDR32.

Q.E.D.

So the adder add computed -40 from -72 and 32. L et us investigate further.

(why (the b add))
;The value 32 is in CELL-25 because that is connected to CELL-37,
* and that is a constant.

Q.E.D.
(why (the a add))
;The value -72 is in CELL-24 because that is connected to (THE A OITIERMULT),

* and <OTHERMULT:MULIIPLIER-31> computed it using ruin MULTIPLIER-RJLE-8
* from: CELL-33 (B) =5, CELL-34 (C) =-360.

Q.E.D.

One V'alue is a constant, and the other was computed by a mnultiplier called othe rmu I t. l et us

examine this mnultiplier.

(why (the b othermult))

70 CI I-tI I TtIRIE I[" I I-N tNCIFS

;The value 5 is in CELL-33 because that is connected to CELL-38,

and that is a. constant.
Q.E.D.
(why (the c othermult))
;The value -360 is in CELL-34 because that is connected to (THE C MULT),

and <MULT:MULTIPLIER-27> computed it using rule MULTIPLIER-RULE-6

from: CELL-28 (A) = 9, CELL-29 (B) = -40.
Q.E.D.

Now othe rmu 1 t got its c value from another multiplier called mu 1 t. We press on...

(why (the a mult))

;The value 9 is in CELL-28 because that is connected to CELL-39,

and that is a constant.

Q.E.D.
(why (the b mult))

;The value -40 is in CELL-29 because that is connected to CELL-40,
and that is a constant.

Q.E.D.

We have now traced out the entire computation, and if we reconstruct the flow of information, we

can deduce that the structure of the computation can be expressed as the formLula

9 x-40
fahrenheit =+ 325

which is certainly the correct Computation.

We could also inquire as to the status of cent i g rade (for example, we might have forgottcn

that we set it ourselves 1).

(why centigrade)

;The value -40 is in CELL-36 because that is connected to CELL-40,

and that is a constant.

Q.E.D.
(why cell-40)

;The value -40 is in CELL-40 because that is a constant.

Q.E.D.

Now perhaps we don't care about the form of the computation, but only wish to know what

input parameters were used to compute the result. (This is trivial for our example, but for very

complicated networks this may not be at all obvious.)

(why-ultimately fahrenheit)

;The value -40 is in CELL-35 because that is connected to (TIHE C ADD),

1. In general, we reserve rhe right to have a poor menmnory-the omputer. however. is suplpsed to remember' Poor
computer.

3..2Responsible Programs 71

n a'd it was ultimately derived from:

< CELL-37 ().32>,
< CELL-40 (?:-40z CENTIGRADE,

* CELL-ag ?) 9),
< CELL-38 (?:5>.

Q.E.D.

Four v'alucs went into die comptitation, one of which has thc name centigrade. Indeed, if'

namces were given to the other values, we would like to see themi also.

(variable linear-offset)
<CELL-41 (LINEAR-OFFSET): no value>
(variable 1 inear-scale-factor-donominator)

<CELL-42 (LINEAR-SCALE-F'ACTOR-DENOMINATOR): no value)
(variable 1 inear-scale-factor-nuinerator)

<CELL-43 (LINEAR-SCALE-FACTOR-NUMERATOR): no value>
(variable another-name)
<CELL-44 (ANOTHER-NAME): no value>
(== (the b add) linear-offset)
DONE

(~(the b othermult) linear-scale-factor-denominator)
DONE

(~(the a mult) linear-scale-factor-numerator)

DONE
(~centigrade another-name)

DONE
(why-ultimately fahrenheit)
;The value -40 is in CELL-35 because that is connected to (THE C ADD),

t and it was ultimately derived from:
<CELL-37 (?:32> LINEAR-OFFSET,
< CELL-40 (?:-40> CENTIGRADE ==ANOTHER-NAME,
< CELL-39 0?:9 LINEAR-SCALE-FACTOR-NUMERATOR,

< CELL-38 (?:5> LINEAR-SCALE-FACTOR-DENOMINATOR.
Q.E.D.

We can of' course use the two query types togethecr. After using why to trace down i te

computation tree a few steps, we can usc why-ul tiinately to determiine which paranmeters an
intermediate value depends on.

(why-ultimately (the c mult))
;The value -360 is in CELL-30 because it was ultimately derived from:

* <CELL-40 (?): -40> ==CENTIGRADE ==ANOTHER-NAME,

* <CELL-39 0') 9 = LINEAR-SCALE-FACTOR-NUMERATOR.
Q.E.D.

72 CI IAP FURT 'IRl- 1)1 P1NI)ENCIES

3.1.2. Required ParamDeters Can fie D~educed front (fie Network Structure 1
D~ependency informnation indicates hlow informnation wits propagated within thc network; thc

information exists only after computations have been pcrforined. BcauLse any cornputation per-
formed by local propagation follows the structure of the network (having choies only in thc

direionof tile now o% cr existing paths), however, we can considcr thle network to prescribec thc sct
of potential dependency relationships. HeInce the network StRictUrc can bc used to explain why a
comnputation did not occur, or to inidicate how one could occur which has not yct.

Le.t 11S tike another temnperature conversion network, ats at the beginning of §24. lBefore
assigningany value to centigrade. let us ask "(why fahrenhei L)". this timne mecaning "Why
does fahrenheit nwihave avaluec?"

fahrenheit
<CELL-lOB (FAHIRENHEIT): no value>
(why fahrenheit)
;CELL-IOB has no value. I could compute it

from pins A, 8 of' ADD by rule ADDER-RULE-I.
Q.E.D.

T'his tells uis that fahrenheit has no value, and suggests a way in which it mnight he coinputed.

(why centigrade)
;CELL-109 has no value. I could compute it

from pins A, C of' MULT by rule MU[TIPLIER-RULE-7.
Q.E.D.

Of Course cent igrade has no value either. It couild be comiputed if f ahrenhe it were given,
for exampe.

(why-ultimately fahrenheit)

;-CELL-108 has no value. Perhaps knowing the value of CENTIGRADE would help.
Q.E.D.
(why-ultimately centigrade)
;CELL-109 has no value. Perhaps knowing the value of FAHRENHEIT would help.
Q.E.D.

Ultinately the comnputation of eidher variable depends onl the other plus the existing constants (5,
9, and 32) in the network. Only mnissing paramieters are given by why-ul t imately.

(why (the c mult))
;CELL-1U3 has no value. I could compute it

from pins A, B of OTHERMULT by rule MULTIPLIER-RULE-6; or
from pin 8 of OIHFRMULT by rule MULIIPLIER-RULE-5; or
from pin A of OJIIERMULT by rule MULIIPLIER-RULE-4; or
from pins A, B of' MULT by rule MULTIPLIER-RULE-6; or
from pin B of MULl by rule MULIIPLIER-RULE-5; or

§3.1.2 Responsible Programns 73

from pin A of MULT by rule MULTIPLIER-RULE-4.
Q.E.D.

Ilhe intermiediate point (the c mul t) could be computed in any of it number of ways. by either

of two constraint devices.

(why-ultimately (the c mult))
;CELL-1U3 has no value. Perhaps knowing the value of CENTIGRADE or

FAHRENHEIT would help.
Q.E.D.

Ultmael eihe o th to aribls oud b uedto omut a ale br(the c inul t).

Suppose now that -Ae equate centigrade to 37 ats in §2.4. As Mcorc. othernul t will be
unable to comipute a valuc because the division is not exact.

(centigrade (constant 37))
;jAwakening <MULT:MULTIPLIER-lOO> because its 8 got the value 37.
;j<MULI:MULTIPLIER-100> computed 333 for its part C from pins A, B.
;jAwakening <OTHERMtJLI:MULTIPLIER-104> because its C got the value 333.
;jAwakening <MULI:MULTIPLIER-1OO> because its C got the value 333.
DONE r

Thecrefore fahrenheit has no value.

fahrenheit
(CELL-las (FAHRENHEIT): no value>
(why rahrenheit)
;CELL-1U8 has no value. I could compute it

from pins A, B of ADD by rule ADDER-RULE-i.
Q.E.D.
(why-ultimately fahrenheit)
;CELL-108 has no value.
Q.E.D.

A sad state of affairs indeed. About all can he said is that die coniputation hats failed. Tlhcre are

no missing paramcetrs-centigrade hats been supplied. The computation has broken down at

othernul t.

(why (the a othermult))

;CELL-105 has no value. I could compute it
from pins B, C of ADD by rule ADDER-RULE-3; or
from pins 8, C of OTHERMULT by rule MULTIPLIER-RULE-S.

Q.E.D.

(the b othormult)
<CELL-106 (B of OTHERMULT): 5>
(the c othermult)
(CELL-107 (C of OTHERMULT): 333>

74 (2' IAITIRI IRFIE IIANINCIES

(Assume that the multiplication happens to be performed last.)

Fioutu- 3-1. Multiple Supliers in the Fqiial-Spaciiig Neiwork.

TIhe only rulc othe rmul1 t has for computing its a is niulI tip 1i ier- rule-8, which rcquircs b
and c. I lowcvcr, thc b and c do have Valucs, and nevertheless no value was computed for thle
a. So there is no hope. Also, it Would not do For (why-ul timatelIy frahlrenhe i t) to say,
"Perhaps knowing thc value of (the a othe rmulI t) would help": there is no integer valuc that
can be given it that is consistent with thc othcr pins5 of o thle rmu 1 t alrcady known.

Wc will return to this problem of "Failed com1putations" in a later section. First lct tis discuss
how to implement the recording of dependencies, and the mnechanisms needed for thc operation of
why and why-ultimiately.

3.2. Recording Dependencies

Recording dependency information simply amiounts to remembering the directions of' the ar-
rows of Figure 2-3 (page 41), plus which rule was used to compute each outgoing value fromn a
constraint box. Observe that a repository which has a value can have first acquired that value fromn
exactly one of its associated cells (a constant, or a pin of a constraint). We refer to this cell as the
sup)ifier of the value. Later other cells may also provide values, but Such Values will mierely confirm
or contradict the first value. 2

It is possible to regard other cells which provide values as subsidiary suppliers, and to
record themn along with the distinguished supplier. '[here are difliculties with using subsidiary
suppliers, however. Recall that in §2.3 the adder add computed b froin a and c, and so the

2 Ibis argumenti mplicitly assumes a sequential miimmepcer for the language such as wc have presented hcrc lhc
language certainly admits parallel evaluation. however, in which case comnputed values may arrive at a repository
simultaneously" In this case we assumei (hat an arbiter chooses onc to bc first-

§ 3.2 Recording Dependlencies 75

(dertype repository (irep-contents ()(rep-boundp ~)(rep-cells)
I ~(rep-supplier ()(rep-rule ()) (rep-mark ()

(format stream "<Repository-J-*-: -S1]@[for -(S-t,}]>P"
(rep-boundp repository)
(rep-contents repository)
(cell-ids repository)))

(defniacro node-contents (cell) '(rep-contents (cell-repository ,cell)))
(detmnacro node-boundp (cell) (rep-bounldp (cell-repository ,cell)))
(defmacro node-cells (cell) (rep-cells (cell-repository ,cell)))

I(detnlacro node-supplier (cell) *(rep-supplier (cell-repository ,cell)))
I(defmacro node-rule (cell) '(rep-rule (cell-repository ,cell)))
I(derniacro node-mark (cell) *(rep-mnark (cell-repository ,cell)))

Cornpare this withlIable 2-1 (page 45).

TAmE .3-I. Fxra Reporilor) FicIds tfor Recordinlg lcildkelciCs.

cell (the b add) served as supplier for its repository. However, thc adder thenl proceeded to

awaken to the f'act that its b had just received a value, and Compted c froin a and b (and
similarly a from c and b). llus (the c add) becameC a subsidiary Supplier for its repository.
Tlo make uise of this fact, however, ill CXplaillillg tile C01lllputatioll of (the b add) would involve
circular reasoing. While we inight circtumvenlt this particular problem by avoidinlg the awakening

of the adder when it comnputed a value for its own pill, the problem would remain in gencral ill
nletworks withl large cyclcs. For example, ill the equal-spacing nletwork of Figure 2-12 (page 65),
the propagation of values might proceed as in Figure 3-1, and tie mlultiplier would be at subsidiary

supplier of the spacinlg factor. However, we would not wanlt to use thlis fact to jtustify the computa-I
tionl of the spacing factor, becatuse then the valtue of' p3 Wotuld appear to to have been compuited
inldirctly from itself.

In order Ilot to produce circular explanationls, it is necessary for tile depenldency slrtletures to
be well- founded. We will achieve this be recordinlg only primary Suppliers, whichl guaranltees tllat

no cycles will)cculr. (Omle can think of informiation as a flutid spreadinlg from constants throughout

the constraint nletwork by propagation, different flows combining withinl constraint b~oxes, but
stopping short just before meeting in a repository.)

In tie implementation we therefore introduce some new complonents for repositories. (it will
11o1 be necessary to chanlge the definitions for cells, constraints, or comstraint-types.)' [hiese are:

" A supplier, whlich is that cell among the node-cells which first provided die value for the
repository. The supplier is Miill if the repository has no value (boundp is false).

" A rule. whlich is the name of the rule tmsed to comipute the value. 'hie rule comnponlent is nutll if
the repository Ilas no value, or if tie supplier Ilas 11o owner (i.e., is a constant).

" A mark, whlich is normally nuill but is available to serve as a mairk bit or a counter by various
graph -ma rk ing algoridillns to be intoduced later.

76 Cli IAxI9 iFRT' I RFTi)Ili:r\w1NmS

(defun constant (value)
(let ((cell (gen-cell)))

(setf (node-contents cell) value)
(setf (node-botindp cell) t)
(setf (node-supplier cell) cell)
cell))

Coinparc this with'Itable 2-2 (page 47).

TABLiE 3-?. A Counstant (Cell Is Its Own Suipplier.

Thew Wdefinition of the repos itory daita struLcture aippeairsin 'laie 3-I. Vertical lines to the
left of the code draw attenltion to differences fronti the previous versioni. As before, extra inacros

like node- suppi 1 er arc defined to miake it casier to refer to colflponents of it node (in the
repository) giv'en one of it"LClIs.

New code is nccdcd to mnaintain the Supplicr and rule comnponelits of rep~ositories. No new

code is needed for generating a cell (gen-ce 1 1); the initial-value inechanisin of de ftype cor-

rectly initializes the new comiponents of' a repository. When a constant cell is created, hlowever, that
cell shiould bc its own supplier (see Table 3-2).

Several changes to die code for == appear in Tlable 3-3. One ilnprovemnilt which is
Sulperficially unrelated to mnaintaining dlependencies is that 11o new repository is created when two
cells arc equated: inistead one repository is i'e-used. Whichever repository has at valuec is the one
chosen, so it is unnecessary to explicitly update (lie supplier and rule comnpollents. Also, it is
only necessary to update (in the dol s t loop) thle eel 1 -repos itory coinpollents of cells
which belonged to [lhe repository not chosen. T[he loop for awakening all the owners of a set of

cells has been abstracted oat ats a separate p~rocedure awaken-al 1, which will also be used by
process-setc later.

A partLicularly nasty opportutnity for imiplemnentation bugs arises ill dhe situation where both

the cells being equated already have values. As before. inesrge-val ues will ensure that tile two
values are conipatible. I lo~wever, it previously did not miatter w hich of' two comipatible values
wats used: but now, when values have dependency informiation attached, it is crucial not to pick

the wrong one, lest circularities arise in the dependency structure. Suippose, for exalliple, that a

iltilliplieir in is created, anld its a is equated to zero.

(create mn multiplier)
<MMULTIPLtER-M3

(== (the a in) (constant 0))
:jAwakening <MMtULTIPLIER-M3 because its A got the value 0.

;l(M:MULFIPLIER-23) computed 0 for its part C from pin A.
;jAwakening (M:MULTIPtIER-23> because its C got the value 0.
DONE

§ 3.2 Recording iependencies 77

(defun (cellt cell2)
(require-cell cell?)

(or (eq (cell-repository cell]) (cell-repository cell2))
(let ((ri (cell-repository cell))

(r2 (cell-repository cell2))
(cbl (node-boundp celli))
(cb2 (node-boundp cell2)))

(let ((r (if (or (not cb2) (and cbl (ancestor celll cell2))) rl r2))
(rcells (append (rep-cells rl) (rep-cells r2))))

(setf (rep-contents r) (merge-values cellI cell2))

(let ((newcomers (if cbl (if cb2 '() (rep-cells r2))
(ir cb2 (rep-cells ri) '())))

(setf (rep-cells r) rcells)
(dolist (cell (rep-cells (if (eq r rl) r2 ril)))

(setf (cell-repository cell) r))
(awaken-all newcomers)
'done)))))

(derun awaken-all (cells)
(dolist (cell cells)

(require-cell cell)
(cond ((cell-owner cell)

(ctrace "Awakening -S because its -S got the value -S."
(cell-owner cell)
(cell-name cell)
(node-contents cell))

(awaken (cell-owner cell))))))

Coinpare Ihis with Table 2-5 fpage 51).

l-AlITlr 3-3. Maiinhlning Siippliir Comnponents When Fquating Cells.

Now that tile a and c both have the value zero, they arc equated.

(== (the c m) (the a m))
DONE
(why (the a m))
;The value 0 is in CELL-24 because that is connected to (TILE C M),

and <M:MULTIPLIER-23> computed it using rule MULTIPLIER-RULE-4
from: CELL-24 (A) = 0.

Q.E.D.

'Ihis is what occurs if tile version of == in Table 3-4 is uscd (which is a version the author used for

quite a while before finding the bug while trying to "prove" it corrcct to himscll). The repository

belonging to c is arbitrarily chosen for use by tie two cells for a and c, and the result is that c
appears to be the primary supplier rather than the constant zcro. Now icro is not the only value

ConSistent with the network construcled (a and c could be Mlyll value if b were I), and so it is

quite improper for the value 'ero in (the a M) to clain to support itself.

Iliat this dependency cycle arises in this example is of course accidental. I lad tie equating of

a and c been written as

.S

78 CI MAI'IIR TI IRFE IAFINI)IENCII"S

(defun == (ceill cell2)
(require-cell cell.j)
(require-cell cel12)
(or (eq (cell-repository cell) (cell-repository cell2))

(let ((ri (cell-repository colli))
(r2 (cell-repository ce]12))

(ebl (node-boundp celll))

(cb2 (node-boundp ce112)))

(let ((r (if cbl rl r2)) ;There is a bug here!
(rcells (append (rep-cells rl) (rep-cells r2)))) F

(setf (rep-contents r) (merge-values celli cel12))

(let ((newcomers (ir cbl (if cb2 '() (rep-colls r2)) p

(if cb2 (rep-cells ri) '()))))
(setf (rep-cells r) rcells)
(dolist (cell (rep-cells (if (eq r ri) r2 rl)))

(sotf (cell-repository cell) r))
(awaken-all newcomers)
'done)))))

Compare this with [able 3-3.

TAItI.I: 3-4. Ali Incorrcct Ipcnicnittaion of FqLiating.

(= (the a m) (the c m))

then tie correct repository would have been accidentally chosen, and all would be well. Again, if

the connection between a and c been made beore the conneclion to the constant zero, Owcn all

would have been well. However, we would like a constraint language to be as free as possible of

such accidental ordering problems. The system must always do things in a consistent and correct

manner. This is the reason for the use of the ancestor predicate in die (correct) definition of
== in Table 3-3. Given two cells which have values, ancestor returns "'true" if and only if the
value in the second cell was supplied by a compttation depending in part on tile first cell: in this

case the first cell is said to be an ancestor of the second. This predicate defines a partial order on

cells with values if the dependencies are kept consistent and cycle-free: indeed, tie predicate is
precisely that partial order defined by the transitive closure of the "primary supplier" relation plus

the "triggers-for" relation which indicates what values were used by a rule to compute a new value.

The definition of ancestor will appear a little later when details of the flew representalion of
rules have been elaborated upon.

In the last chapter rules were simply LISP functions which could be run whenever a cell got

a value. This will still be true, but for explanation purposes it will be tseful to associate other
information with rules. As a matter of implementation convenience 3 the property list of the symbol

naming the rule is used to store this extra information. It would be perfectly reasonable to define

3. or Iatincs-but this illustrates a common iechnique or liSP programming: the use of the properly list. It also

illustrates a general iechnique of interactive programming: do as little work as you can while trying out an idea-
the time to polish the code is after the idea is known to work. Put another way, it's not worth investing a lot of
efforl for the sake of elegance or spced in an idea that may not work anyway.

.. .- 11 I. . . p' I l - ...- "

§ 3.2 Recording Dependencies 79

(defprim adder (a b c)
(c (a b) (setc c (+.a b)))
(b (a c) (setc b (- c a)))
(a (b c) (setc a (- c b))))

(derprim multiplier (a b c)
(c (a) (and (zerop a) (setc c 0)))
(c (b) (and (zerop b) (setc c 0)))
(c (a b) (setc c (s a b)))

(b (a c) (and (not (zerop a)) (zerop (\ c a)) (setc b (// c a))))
(a (b c) (and (iiot (zerop b)) (zerop (\ c b)) (setc a (// c b)))))

(derprim maxer (a b c)
(c (a b) (setc c (max a b)))
(b (a c) (cond (((a c) (setc b c))

(() a c) (contradiction a c))))
(a (b c) (cond ((< b c) (setc a c))

(() b c) (contradiction b c)))))

(defprim ninner (a b c)

(c (a b) (setc c (min a b)))
(b (a c) (cond ((> a c) (setc b c))

(((a c) (contradiction a c))))
(a (b c) (cond ((> b c) (setc a c))

(((b c) (contradiction b c)))))

(derprim equality (p a b)
((p) (or (= p 0) (z p 1) (contradiction p)))
(p (a b) (setc p (if (= a b) 1 0)))
(b (p a) (and (= p 1) (setc b a)))
(a (p b) (and (= p 1) (setc a b))))

(defprim gate (p a b)
((p) (or (= p 0) (= p 1) (contradiction p)))
(p (a b) (or (= a b) (setc p 0)))
(b (p a) (and (= p 1) (setc b a)))
(a (p b) (and (= p 1) (setc a b))))

Compare this with Table 2-7 (page 53).

TABLR 3-5. Implementation of Primitive ConstrainLs with IDpcndcnc) Informlvtion.

a new data type called rule with several components (one of them being the function itself),

but this technique lessens the distance between the old and new code; for cxample. the code for
awaken need not be altered.

With each rule is associated two lists of names of pins. The list trigger-nantes contains the
names of pins which must have values in order to run the body of the rule. 'ihis is exactly the set

of pins whose botundp components are checked by the preamble in each rule defined by defp rim.

The list output-names contains die names of pins which might (or might not) receive values when

the rule is run. Thius these are the pins which are "inputs" or *outputs" for that rule. Any given

invocation of the rule might not use all the inputs and might not give values to all the outputs,

however, depending on the values of inputs examined.

-c

80 ,.l 1API IiR TI IRF.)1llN l)IN(I FS

J(defmacro derrule (typename output-names trigger-names body)
(let ((rulename (gen-name typename 'rule)))

,(progn 'compile

(push ',rulename (ctype-rules ,typename))
(defun ,rulename (me*) (let ((*rule* ',rulename)) ,@body))
(defprop ,rulename ,trigger-names trigger-names)
(defprop ,rulename ,output-names output-names)
'(,typenane rule))))

(defmacro defprim (name vars . rules)
*(progn 'compile

(declare (special ,name))
(seta ,name (make-constraint-type))

(setf (ctype-name ,name) ',name)
(setr (ctype-vars ,name) ',vars)
,@(forlist (rule rules)

(do ((r rule (cdr r))
(output-iiames '() (cons (car r) output-names)))
((or (,ul, (car r)) (not (atom (car r))))
(let ((trigger-names (car r))

(body (cdr r)))
,(derrule ,name ,output-names ,trigger-names

(let ,(forlist (var vars)
,(,(symbolconc var "-CELL") (the ,var *me*)))

(and ,@(forlist (var trigger-names)
'(node-boundp ,(symbolconc var "-CELL")))

(let ,(forlist (var trigger-names)
,(,var (node-contents

,(symbolconc Yar "-CELL"))))
,@body))))))))

'(,name primitive)))

Compare this with Table 2-8 (page 55).

TABLF 3-6. D[inition of defp rim Whicl Saves Rule hiformation.

"lliese lists could be computed autornaticallyl by analyzing die code of die rule-body, and a

"real' constraint language system ought to do this. To save work here, however, that information

will be represented redundantly (just as in the last chapter the %et of trigger names was written

redunadantly). The format of defp r im is redefined such that the Output names are written before

the list of input narnes in each rule clause. New definitions of the primitive constraint boxes are

in '[able 3-5: new definitions of de fp r im and de f ru l e appear in Table (, (Only the most im-

portant changes in the code arc indicated by vertical lines to the left-for example. the substitutions

of"trigger-names" for "(car rule)" in several places in defprim are not marked.) One

change to defrule which is used by process-setc is that tile variable ,rule* is bound to

the name of die rule when the rule-body is executed.

If die primary supplier for a value is a pin of a constrainl, then the repository for that value

also contains the name of the rule which derived that v1,uC. Given that, the names of the triggers

§ 3.3 Proudcig L:'xphinaions 81

(derun ancestor (celil cel12)
(let ((rl (cell-repository cell!))

(r2 (cell-repository ce12)))

(or (eq rl r2)
(and (rep-boundp r2)

(cell-owner (rep-supplier r2))

(do ((tns (get (node-rule (rep-supplier r2)) 'trigger-names)
(cdr tns)))

((null tns) ())

(and (ancestor celli (*the (car tns) (cell-owner (rep-supplier r2))))
(return t)))))))

TAIII. 3-7. I-'finition of the Ancctol Rcltti~M.iship hctll ('clis with Values.

for that rule can be obtained, and ffloni that and the owner of the pill lie trigger cells theinselves

and their values can be located. This is all that is needed to define the ancestor predicate (see
Table 3-7). One cell is a ancestor of another if they have the same repository, or if the second is
bound and the first is an ancestor of one of die triggers for tie rule used to compute the second.
(Another way to compute this would be: the first is an ancestor of the second if they have the same

repository, or if any pin for which the first had been i trigger is an ancestor of the second. This

searches from the top down rather than tie bottorn up. However, a v'aloe miay be a trigger for

arbitrarily many other ,alues, but ay given vahe is computed from only as many trigger values
as are required by the rule needing the greatest nltl1bcr of triggers (among all rules in the system).
Intuitively, then, the fanout of the search procedure in Table 3-7 is guaranteed to be bounded, wile
that of the other is not. Onl the other hatid, perhaps in typical use the typical value is a trigger for
only one or two other values. I have not yet made measurements to determine which procedure is
better in practice.)

No change is necessary for handling the contradiction construct. On the other hand,

setc and process-setc miust be changed to instal supplier and rule information (see Table
3-8). With this requirement, it is just as easy not to make up a fresh cell and equate it to the pin;
instead, one might as well just do the relevant tests and install the new %rahle (if indeed it is new)

in the existing repository alog with the supplier and rule infolrmation. If the pin to be set does
not have a value, then the value and dependency information is installed and all interested parties
awakened. If it does have a value, then it had better be the same as the one we wish to install.
Technically ine rge-va I ues should be used here, but for now we omit tiffs for the sake of giving
a more precise error imessage. Similarly, a side benefit of having setc do sornle case anlalysis is that

less ctrace output is generated: this version of setc only calls ctrace when a new value has

been computed.

82 CIlAP HTR *'IIItIFE I)FPI-NI)I.NCIFS

(defmacro setc (cellname value)
,(process-setc *me.. ',celiname ,(symbolconc cellname "-CELL") ,value *rulev))

(defun process-sete (.me* name cell value rule)
(require-constraint *me*)
(require-cell cell)
(let ((sources (get rule 'trigger-names)))

(cond ((not (node-boundp cell))
(ctrace "S computed -S for its part ~S-:[-2,~; from pin-P {-S-t, ."

me value name sources (length sources) sources)
(setf (oode-contents cell) value)
(setr (node-boundp cell) t)
(seLf (node-supplier cell) cell)

(setf (nod3-rule cell) rule)
(awaken-all (node-cells cell)))

((not (equal (node-contents cell) value))
(lose "Contradictory values at -S: -S says -S, but -S says -S."

.,II d cell)

(node-supplier cell)
(node-contents cell)
.me*
value)))))

Compare this with Table 2-11 (page 57).

TAII.E "8. Definition uf setc for I andling Dependencies.

3.3. Producing Explanations

All die machinery for maintaining dependency information in the constraint network is now
in place. 'he remaining new code uses this information to generate explanations.

The code for why appears in Table 3-9. It is complicatcd only bccause there arc several cases,
and because each casC tries to format the output neatly. If the cell has no value, then this fact is
stated; then all the possible ways of computing it in one step are found and printed, or if none are
found this is stated. If the cell has a value, then the value is printed, and if the given cell is not the
supplier the connection to the supplier is mentioned: then the supplier may be a constant or may

be a pin of a constraint, and in the latter case tile relevant rile and its triggers are printed. (Tle
function cel I-goodname constructs a "good" name for the cell, one the user is most likely to
find useful.)

The information printed by why-ultimately includcs the premises of tile value asked
about. These are all the values used to compute the given value which do not have any ancestors
that is, the premises are (he ultimate ancestor values of the given value.

Table 3-10 gives a straightforward but potentially inefficient algorithm for computing the set
of premises, given a cell. If the cell has no value, it has -no premises. If it is a constant, then it is its
own premise. Otherwise the set of premises is tile union of tie scLs of premises for tie triggers of
the rule used to compute the value in the cell. This algorithm is recursive, and performs a tree walk

§ 3.3 Producing Explanations 83

(derun why (cell)
(require-cell cell)
(cond ((not (node-boundp cell))

(format t "-%;-S has no value." (cell-id cell))
(let ((flag ()))

(dolist (c (node-cells cell))
(and (cell-owner c)

(dolist (rule (ctype-rules (con-ctype (cell-owner c))))
(let ((trigger-names (get rule 'trigger-names))

(output-names (get rule 'output-names)))
(cond ((memq (cell-name c) output-names)

(format t "[I could compute it-;-
; or)"

flag)
(setq flag t)
(format t "~; from ":[~2*~;pin~P ~{~S-t, } of ~-

~S by rule -S'

trigger-names
(length trigger-names)
trigger-names
(con-name (cell-owner c))
rule)))))))

(format t ":[I don't have any way to compute it.-;.]" flag)))
(t (format t "-;The value ~S is in -S because

(node-contents cell) (cell-id cell))
(let ((s (node-supplier cell)))

(or (eq s cell)
(format t "that is connected to -S,-%; and " (cell-goodname s)))

(if (null (cell-owner s))
(format t "that is a constant.")
(format t ":[-;]-S computed it using rule -S-

@[%; from: ~:[-S (~S)~:[* -S]~t, }]."
(eq s cell)
(cell-owner s)
(node-rule s)
(forlist (trigger-name (get (node-rule s) 'trigger-names))

(let ((cell (*the trigger-name (cell-owner s))))
(list (cell-id cell)

trigger-name
(node-boundp cell)
(node-contents cell)))))))))

'q.e.d.)

(derun cell-goodname (cell)
(require-cell cell)
(cond ((globalp cell) (cell-name cell))

((constantp cell) (cell-Id cell))
(t (list 'the (cell-name cell) (con-name (cell-owner cell))))))

TAwl. 3-9. Codc for why: Generating a One-Step Explanation.

on the dependency structure. Inefficielcy arises when the dependency graph is not strictly a tree,
but contains many shared sulbtrees: in the worst case it may take exponential time in tie size of the

network to compute that sct for example on the network of Figure 3-2.

LI

84 (21IAITlR I IiREEl I)11ut:N[DI;NCI:S

(defun premises (cell)
(require-cell cell)
(cond ((not (node-boundlp cell)) ')

(t (let ((s (node-supplier cell)))
(if (null (cell-owner s))

(list S)

(do ((tns (get (node-rule s) 'trigger-names) (cdr tns))
(p I() (unionq (premises (*the (car tns) (cell-owner s))) p)))

((null tns) p)))))))

TARHt 3- 10. Calculation of the Premises Siippiirting aj Vallue.

Ftoutw 3-2. A Depenudency Structure fur Which premises Takes Fxpoinential Tille.

Tlablc 3-11 gives an) algorithm tilat avoids suICh exponential behavior by marking nodes as tiley
arc visited. TIhe mnacros mark-node. unmark-node, and markop arc used to set, clcar, and test
a (nlormally clcar) mark bit asso ciated with cach node. The structure of' the algorithmr is much
dieC samie, except that cvcry node visited is marked, and when a nmarked node is encountered that
branch of' thc search is cut off'. Moreover, sinlce every premise Will bc Counted exactly once, d~ie

set-untiotl operationl un i onq (whichl climinates duplicate entries) can be rep~laced by tie faster list-
concatenation operation nconc. After the set of premises has been collected, however. another
pass is needed to clear all the marks again (because it is assumed that all miarks are initially clear).
Thlus fo~r dependency structures With 11o sharing of' subl-trees this algorithm may be slower by a
constant factor due to overhlead (but remember that tile first algoritllm may be exponentially slower
thanl tile fast one in other cases!).

IDigres.sion.Another possible approach depends hca~ilI (on anl uiidcil~ing garbage collector (Whichi in fact
exists iii this fisi-bascod iioplociicnation). Hathcr than uising a iark bit, a miark object is used Which
is tii(iiiely generated for each application of fast-premi ses. When fast-premises is called, it
generate-. a new sio rage object, ,Io res this ibjcci in the mark coinmpon en t of' evcr isied no de. flitus
markp rncreI tests Whether [the mark comiponent is thi (ibject. [he genecrated object cannt he confuised
"ithi one generated for either an earlier or a later call to fast -preises. ('oii fusion coul1d only arise
if Such anl objct: Were re-tsed While a pi inter to it residecl in s olne nod(e: butt hei garbage cillectiir
giia rantees that thiis cannoit o ccu r. (Ibis idea is di ie to Gerald Jay Sussm an.)

One canl say that1 a global proicss is nee:ded -A) as nil, to confuse ioe marking Withi anothcr. Tile
function fast-premi ses-unmark constittes ione such process. [he techniquei discuissedl here Pushed
that work onto the garbage collector, an already cxistinlg global process.

§ 3.3 Iio~icing Explanalivus 85

(detmacro mark-node (cell) (setf (node-mark ,cell) t))
(defmacro unmark-node (cell) '(setf (node-mark ,cell) nl
11dermacro markp (cell) '(node-mark ,cell))

(defun fast-premises (cell)
(require-cell cell)
(progl (fast-premises-mark cell) (fast-premises-unmark cell)))

(defun fast-premises-mark (cell)
(require-cell cell)
(and (node-boundp cell)

(let ((s (node-supplier cell)))
(cond ((markp s))

(t (mnark-node s)
(if (null (cell-owner s))

(list s)
(do ((tns (get (node-rule s) 'trigger-names) (cdr tns))

(p '() (nconc (rast-premises-mark
(*tlie (car tns) (cell-owner s)))

PM)
((null tns) p))))))))

(defun fast-premises-unmark (cell)
(require-cell cell)
(let ((s (node-supplier cell)))

(cond ((markp s)
(unmark-node s)
(or (null (cell-owner s))

(dolist (trigger-name (get (node-rule s) 'trigger-names))
(fast-premises-unmark (*the trigger-name (call-owner s)))))))))

TABni:t 3-1l. Famst Ca.lculagtion of' Prcniiscs.

Note that simiply geramting a numnber (the "bakery ticket- mecthod) Li) UsC for a miark object doesn't
quite work-if' the siie of' a nuiber is finite eventually somie will be re-used. Only a global process
keeping track of' which numbhers still reside in nodes can avoid confusion.

Thc numiber of' distinct miark objects snultaneotisly iii existence need not exceed the nuimnber of'
nodes, plus one.

(End of digrcssion.)

If a cell Ilas no value, it is still possible to dctcmiinc thc set of poicniial premises of tile ccl:

cells whichl, if they only Ilad values, might eventually become premnises bccau1Se their' values mlight

conltribute to a valuic for thle cell of' interest. The function des i red-prenli ses in T'able 3-12
com~putes this~ set. It tiscs a gralph-markullg technique ill tile samce mannter as f ast-p rerni ses.

In this case cells whichl have no valtic are of' iterest. Thle search is mo~re comlplicated because at

cach step, if thlere arc several constraints attachled to a node, no oiie of' theml is distinguished as

thc supplier. anld no onlC rtilc distinguished as tile generatinlg rtule: instead, all rides of' all attachecd
constraints which might possibly co~mpute a value for thlat node multst be conlsidered and r-ccurs-iVCly

scarchcd.

86 Ci IAPTIER IIIMIT IDlrPNIONCl FS

(defun desired-premises (cell)
(require-cell cell)
(progl (desired-premises-mark cell) (desired-premises-unmark cell)))

(defun desired-premrses-miark (cell)
(require-cell cell)
(cond ((and (not (node-boundp cell))

(not (inarkp cell)))
(mark-node cell)
(do ((c (node-cells cell) (cdr c))

(p 1() (nconc (if (null (cell-owner (car c)))
(and (globalp (car c)) (list (car c)))
(des ired-premises-constraint (car c)))

((ull c) p))

(defun desired-premises-constraint (cell)
(require-cell cell)

(dolist (rule (ctype-rules (con-ctype (cell-owner cell))))
(and (memq (cell-name cell) (get rule 'output-names))

(dolist (trigger (get rule 'trigger-names))
(setq p (nconc (desired-premises-mark

(*the trigger (cell-owner cell)))

(del'un desired-premises-unmark (cell)
(require-cell call)
(cond ((and (not (node-boundp cell))

(markp cell))
(unmark-node cell)
(dolist (c (node-cells cell))
(and (cell-owner c)

(dolist (pin (con-values (cell-owner c)))
(desired-premises-unniark pin)))))))

(defun globalp (cell)
(require-cell cell)
(and (null (cell-owner cell)) (not (eq (cell-name cell) '))

TAII.F 3-12. Dcicmiining Potential Premises for a Celi with No Value.

(ihc function gl1 bal1p is at predicate which is true or cells which arc neitlier pills nor con-

stants.)

Th codC for why-ultLimately t([able 3-13), like that for why, divides into two cases. If
Cic given cell is has 110 Value, thlen that fact is stated, and if thc set of desired preinises is lnot elflpty

its clcmcn~i arc listed. If tic cell has a value, then tOle possihilities that itlls nt the suplplier and

that h1C su:)phier is at conistant are considered, exactly ats they are for why. 'Thell the set of premises

is prinks.J: all premnises arc constanlts, of course. and so to hlp distinguish thein any global nameis

§ 3.3 Producing Explanations 87

(defun why-ultimately (cell)
(require-cell cell)
(cond ((not (node-boundp cell))

(format t "~%;~S has no value." (cell-id cell))

(format t "-@[Perhaps knowing the value of -

-(-<-%; -:15;-S ->-for -)would help.-]"

(forlist (c (delq cell (desired-premises cell))) (cell-name c))))
(t (format t "-%;The value -S is in -S because

(node-contents cell) (cell-Id cell))

(let ((s (node-supplier cell)))
(or (eq s cell)

(format t "that is connected to -S,-%; and " (cell-goodname s)))
(if (null (cell-owner S))

(format t "that is a constant.")

(format t "it was ultimately derived-
-@[from:-:(-%.; -S~@{ = S } :t ~- .

(forlist (p (premises s))
(cons p (mapcan #'(lambda (c)

(and (globalp c)
(list (cell-name c))))

(no(le-cells p)))))))))
'q.e.d.)

TAw.tL 3-13. Implemcntiuon of why-ul t imately.

attached to a premisc arc also printed, preceded by 4 .

That'sall there is to why and why-ul t imately. Simple, is it not?

The only difficulty with these explanation mechanisms is that one provides very local informa-

tion, and the other the most global possible information; neither provides any sense of how tie

local situation is related to its surroundings. Of course, the user can use why to chase down thc

computation step-by-step, but that can produce a vet' l)ng explanation fill of trivial details. A long
linear explanation at the lowest level is much less useful than a short one mentioning high-level

goals.

4. If the set of premises is empty, then the output will say "The value 43 is in CIl.l -27 because it was ultimately
dcriwcd." which is admittedly cryptic. This shouldn't happen with the particular primifivc constraints shown s far,
but could with more bizarrc constraint-iypes. Part of the art of designing format messages is arranging for the
boundary cases and conditional cases always to be grammatical!

88 CHAPTER 'riRiu. DElPI-NDENCIES

Consider the fidlowving subtraction problem..

342-173
Now. remember how wve used to do that: three fromn two is nine. carry' the one: and if
you re tinder 3.5 or wvent to a private school ' ou sa)' seven from three is six, but if you re
over 35 and wient to a public- school you sqv eight front four is six: and carry the one.
so You have 169.
Rut in the new approach, as you know the important thing is to understand
whawt You re doing rat/her t/han to get the rig/it answer. Here s how they do it
now.,

Y'ou can *t take three fromn twvo.
Two is less than thiree.
So you look at t/ie four
In thie tens p)/ace.
Now. I/tat s rea/ ' four tens.
So yo~u inake it thiree tens.
Regroitp.

Now instead of four in thie tens place. And you chiange a ten to' ten ones.
Y'ou've got three. Then ' ou add to thie two atnd get twvelve
(ause you added one- And iou take away Itree-I/lw s nine.

That is to say, ten- (Is 11hat clear'))
To the two, but you can't
Take seven from three
So , ou look in the hundreds place.
From the three
You then itse one
To miake ten ones
And you knowv why four
Pis mninus-one plus ten
Is liturteen tinius one:-
Vause, addition is eonuttttii've! Rig/it!
And so you hiave thirteen tens
And you take awvay seven Now you go back
and that leaves five! To tie hundreds place.

(Well . .. SiX a~i1-1 You're left with two
N~it th dais teiprathng)And you take away one

the ica te imortat thng.)Fromn twvo and that leaves ..

(Fverybody get onc? Not had for the first day.)

Hoorq)y for New AMath.
Neivw-ewe Math.

It wvon t1 do you a bit of* good to reviewv math:
It's so simple.
So very simple.

That only a child can do it!
-Ton Lehirer (1965)

"Nc'w With-
That Wlas The Y ear Thvai Was

§ 3.4 Representing Syjmboliic Resuhs in Mei Net Hvrk 89

3.4. Representing Symbolic Results in the Network

We return now to thc problein encountered at the end of §3.1: what explanation can be given
when dhe computation fails to inake progress? More gcncrally. what explanation canl lc givcn
that is less local than tlie onec-step explanation ofwily hut less distant than the leaves of (lhe tree
searched by why -u 1 t inmat ely? The udlimate explanation ol whatever comiputation did or did
not occur certainly lies in the ilet~ork itsel f, but it is not necessarily helpful simlply to print tie
entire network. partly because the network may be huge. and partly because it miay be that most
of the network is irrele~ ant to the nleeded explanation. (Ily "~ay of comparison, it is not of direct
help to answer it question like, "What are the colors of thie rainbow?" b) handing the inquirer an
encycloped ia-parlltic Ularl-1y if the encyclopedia is not alphiabeti,.cd!-expccting himn to read it all to
get an answer to Ilis question.)

3.4.1. Stilgraphs ofilMe Netw~ork May lie Printed as Algebraic Expressions

Here we present at new function what whlich produces an explanation for a cell by copying
it carefully chosen part of the network structure, with directions assigned to edges Such that the
chosen part is anl acyclic directed graph and the cell of' interest is at the root, and printinlg that

p~art ats nested algebraic expressions. Suppose once again that we have created a fresh temperature
conversion network.

(what fahrenheit)
;CELI -99 has no value. I can express it in this way:

FAHRENHEIT =(+ (1 *9 CENTIGRADE) 5) 32)
OKAY?
(what centigrade)
;CELL-100 has no value. I can express it in this way:

CENTIGRADE (I((-FAHRENHEIT 32) 5) 9)
OKAY?

T[he Function what is not perfornming trilStor11iltiOnS Oil algebr-aic expressions ill the usual general
s'ense. Fach the algebraic expressions above is imerely a way of printing (a part of-in this case the
whole of) the network.

(what (the c mult))
;CELL-94 has no value. I can express it in this way:

(THlE C MULT) ((-FAIRENHEIT 32) 5)
OKAY?
(what (the c othernlult))

90 Cl1 IVVRT WE~tE 1)uI'NIn NciVS

:CELL-98 has no value. I can express it in this way:
(THE C OTHERMLJLT) (s9 CENTIGRADE)

OKAY?

Tlhe C Pins Of the two mul.1tipfiers arc connected together. However, what prints two diffrent

expressions for themi because it avoids (ats a heuristic) using a constraint as part of thc explanation

for at valueless pin of that constraint.

(variable foo)
(CELL-104 (FOO): no value)
(== (the c mult) foo)
DONE
(what Fahrenheit)
;CELL-99 has no value. I can express it in this.way:

FAHRENHEIT =(+ (// FOO 5) 32)
OKAY?
(what centigrade)
;CELL-100 has no value. I can express it in this way:

CENfIGRADE (/FOO 9)
OKAY?

Another hecuristic is that nodes with explicit global names are at good stopping place. It is not nees-

sary to print tie entire network-just to indicate relationships to the "nearest neiglhors" which

(what too)
;CELL-104 has no value. I can express it in this way:

FOO ((-FAHRENHEIT 32) 5)
OKAY?

Now foo could be expressed in terms of either Fahrenheit or centigrade: what hap-

pencd to choose the formier.T'herc may be many equivalent expressions ito use-, it is not desirable to

print them all, and not easy to choose the best. (McAllester 19801 The version of what presented

here has only at few heuristics, and to simplify the presentation. no way has been provided to

change them. It will serve as at modest example of what can bc done, however.

Let cent igrade be given thc value -40.

(=- centigrade (constant -40))
:JAwakening (MUIT:MULTIPLIER-91> because its B got the value -40.
;f(MU11:MfLTIPLIER-91) computed -360 for its part C from pins A, 8.
:jAwakening <OTHERMULT:MULTIPLIER-95> because its C got the value -360.

;I(OTIIERMULT:MULTIPLIER-95> computed -72 for its part A from pins B, C.
:IAwakening <ADD:AOOER-87) because its A got the value -72.
;I(ADD:ADDER-87> computed -40 for its part C from pins A, B.
;jAwakenlng (ADD:ADIDER-87> because its C got the value -40.
;jAwakening <OTHERMULT:MULTIPLIER-95> because Its A got the value -72.

§ 3.4.1 Representing S wibolic Results in the Network 91

;IAwakening <MULT:MULTIPLIER-91> because its C got the value -360.
DONE

Note that much less ctrace output is generated this tine (thanks to the changes to process-setc

in Table 3-8).

(what fahrenheit)
;The value -40 in CELL-99 was computed in this way:

FAHRENHEIT 4 (+ (// (, 9 CENTIGRADE) 5) 32)

CENTIGRADE 4 -40

OKAY?

In this case the heuristic is to explain the value completely. The entire compUtation is printed. In

order to take advantage of nested expression notation, what avoids using intermediate names like
foo. However, it does use the name cent igrade to identify the constant -10 to distinguish it

from the other constants. The variable name foo still exists, of course; what has merely chosen

not to use it.

(what foo)
;The value -360 in CELL-104 was computed in this way:

FOO +. (* 9 CENTIGRADE)
CENTIGRADE +- -40

OKAY?
(what centigrade)
;The value -40 in CELL-100 was computed in this way:

CENTIGRADE 4- -40
OKAY?

Fxplanations of intermediate stages are also easily generated. This time foo is explained in terns
of centigrade rather than fahrenheit, since the value was derived from centigrade.

Now suppose that instead of -40, the value 37 is given to centigrade (in a fresh tempera-
ture conversion network). Recall that this computation will "fail" because of inexact division.

(== centigrade (constant 37))
;IAwakening <MULT:MULTIPLIER-110> because its B got the value 37.
;j<MULT:MULTIPLIER-110> computed 333 for its part C from pins A, B.
;{Awakening <OTHERMULT:MULTIPLIER-114> because its C got the value 333.
;IAwakening <MULT:MULTIPLIER-1lO> because its C got the value 333.
DONE
(what fahrenheit)
;CELL-118 has no value. I can express it in this way:

FAHRENHEIT = (+ (// 333 5) 32)

OKAY?

WUe

92 Cl lAP IL F Rii IF)PlND NO FNIS

P1 P2 P3 P4

FIG 1 3-3. (' ost raiin g Fur Poits tu be 1kj iallI Spaced.

Hecre what claims that r a lre nheit "has no va]lue". However, it is ablc to printt out an expres-

Sionf for it cntirely in termIs of constants. Except that it is not in reduced form. this is (fhe form of

answcr we might cxpcct anyway: a mixed mumber. 5

TIhe ability of what to dcal reasonably with networks containing cycles hias not bet

demnonstrated, ats thc temperature conversion network has not cycles. For anothcr example let LIS Usc
an extension of the network of Figure 2- 10 (page 64) for spacing four points equally (sce igure 3-

3).

(defun test (
(variable p1)
(variable p2)
(variable p3)
(variable p4)
(create a12 adder)

(create a23 adder)
(create a34 adder)

(=(the a a12) p1)
(~(the c a12) p2)
(~(the b a12) (the b a23))
(~(the a a23) p2)
((the c a23) p3)
((the b a23) (the b a34))
S(the a a34) p3)
(~(the c a34) p4))

TEST

5. Production of a rcduced forin cannot be dlone purely bN local piropagalion anywav: it reqzzircs algebra Mei steps are:
.12 1-331:3/5 -4 :12 -1f (330 1 (-3)/5 -- 4 :12 4 (3:30/5 -f -3:/5) --+ :12 1- (66l -1 -3:/5) -~(:12 +- 60l) +---3/5 --i [8:1/5.
which requires (amiong other things), disiributiun of divrision over addition and associatilit of addition, as well as

two simiple local arillhmctic opczations and one -noiz-deterininistic" (aclually guided by thc requirements of "reduced
form") rcsersc'addition splitting of 3133 into 330) -+ 3.

§ 3.4.1 Representing Symboli(Results in the Network 93

PI P2 P3 P4

P2 P3

FIGUR F 3-4. Computing Fqtual Spacing for Four Points.

'llese arc all the statements for constructing the four-point equal-spacing network, packaged up as
a I ISP finction called test. Executing this function will thus construct an instance of the equal-

spacing network. 6

(TEST)
DONE
(what pl)
;CELL-151 has no value. I can express it in this way:

P I1 = (- P2 (- P3 P2))
OKAY?
(what p2)
;CELL-152 has no value. I can express it in this way:
; P2 (- P3 (- P2 P1))
OKAY?
(what p3)
;CELL-153 has no value. I can express it in this way:

P P3 = (- P4 (- P2 P1))
OKAY?
(what p4)
;CELL-154 has no value. I can express it in this way:
; P4 = (+ P3 (- P2 P1))
OKAY?

In each case, what doesn't run off and print the entire network, but just enough to give a feel for
the local connections. Note that three of the equations arc not circular: this is somewhat acciden-
tal. Iowever. in describing pI the expression (- p3 p2) was used rather than (- p2 p1)

because the adder needed for the latter had already been used lbr the outer subtraction. In this
limited (and locally defined!) sense, circularity is avoided in the explanations.

6. Use of a IIS)' function defiition in this way is of course also outside the defined constraint language. lluis is yet
another example of how the faicilitics of lhe mcta-language can be used to aumenti the usabili. of a toy Language
until the latter prows to the point of providing such facitries itself Defining and using a function like test is much
easier than typing a doen or two statements each time the network is needed. Iventually an equivalent facilit) will
be provided in the constraint language itstr.

AD-A096 556 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC F/G 9/2
THE DEFINITION AND IMPLEMENTATION OF A COMPUTER PROGRAMMING LAN--TC(U)
AUG 80 G L STEELE N0001-80-C-0505

UNCLASSIFIED AI-TR-5952 1II4 II00000000
IEEEEEEEEEEEEIEEEEEEEEEEEEE
IEEIIEEEEEEEI
EIEEEEEIIIIII
EEIIEEEIIIIIIE
EEIIIIIEEEEEEE

94 C1 IAIFR' IREE I)I:PEN1*-NC11ES

(~p1 (constant 3))
:IAwakening <A12:ADDER-155> because its A got the value 3.
DOME
(== p2 (constant 5))
;lAwakening (A23:ADDER-159> because its A got the value 5.
:jAwakening <A12:ADDER-155> because its C got the value 5.
;((A12:ADDER-155) computed 2 for its part 8 from pins A, C.
;jAwakening <A12:ADDER-155> because its 8 got the value 2.
;jAwakening <A23:AODER-159> because its 8 got the value 2.
;I(A23:AODER-159) computed 7 for its part C from pins A, B.
;jAwakening (A34:ADDER-163> because its A got the value 7.
;I(A34:ADDER-163> computed 9 for its part C from pins A, B.
;jAwakening <A34:AODER-163> because its C got the value 9.
;IAwakening (A23:ADDER-159) because its C got the value 7.
;lAwakening (A34:ADOER-163> because Its B got the value 2.
DONE

Presumably now p3 ==7 and p4 ==9. (Scc Figure 3-4.)

(what p3)
;The value 7 in CELL-153 was computed in this way:

P3 (+ P2 (-P2 P1))
P24-5

OKAY?

Okay! This is a reasonable explanation. Again, note that if a constant has a global name associated
with it, that name is used.

(what p4)
:The value 9 in CELL-154 was computed in this way:

P4 +- (+ (4. P2 (THE B A12)) (THE B A12))
(THE 8 A12) ~ -P2 P1)
P2'-5
P14-3

OKAY?

Here the result of the computation p2 p2 p1) must be used twice in the expression describing
p4 because in fact the value was used in two diffierent ways during the course of the computation.
However, what avoids giving the impression that parts of the network are duplicated. Since there
is no global name for the intermediate quantity, the name (the b a 12) of the supplying pin is
used to namne the quantity.

(variable spacing)
(CELL-169 (SPACING): no value>
(~spacing (the b a12))

DONE

§ 3.4.2 Representing Symbolic Results in the Network 95

(defun what (cell)
(require-cell cell).
(cond ((not (node-boundp cell))

(format t "-%;-S has no value. I can express it in this way:-
- :{-x; ~S = -}"

(cell-id cell) (tree-form cell t)))
(t (format t "-%;The value -S in -S was computed in this way:-

S:(- , ~S -- S ~} "

(node-contents cell) (cell-id cell) (tree-form cell))))
',okay?)

TAIII.E3-14. [i.itiom of the what Fxplaination Function.

(what p4)
;The value 9 in CELL-154 was computed in this way:

P4 4- (+ (+ P2 SPACING) SPACING)
SPACING 4- (- P2 PI)
P2 -5
P14-3

OKAY?

Once a global name has been supplicd, however, what is happy to use it instead.

(what p3)
;The value 7 in CELL-153 was computed in this way:

P3 4- (+ P2 (- P2 P1))
P24-5
P14-3

OKAY?

On the other hand, the extra name is not used if it is not necessary to avoid duplicating expressions.

The general aim of the what function is to print a relevant portion of the network. If the
portion contains no values, as little as possible is printed to relate the cell of interest to globally
named cells and constants. If the cell of interest contains a value, then the entire computation
of that value is displayed (which for a large network might still be too much, actually); nested al-
gebraic expressions are used as much as possible, but intermediate names are introduced to denote

constants and quantities which must be mentioned more than once. Whenever an intermediate
quantity must be named an attempt is made to locally determine the "best" name for it, but no
more global criterion is used to choose one expression over another. [McAllester 19801

96 CI IAII ERT 'FIRE 11l[I)NI

(defmacro nununark (cell)
'(setf (nodle-mark ,cell)

(if (numberp (node-mark ,cell)) (+ (node-mark ,cell) 1) 1)))
(defmacro unnunwiark (cell) (setf (node-mark ,cell) ()
(defmacro nunimarkp (cell) -(nuinberp (node-mark ,cell)))

(def'macro singlenununarkp (cell) -(equal (node-mark ,cell) 1))

(defprop adder ((c (+ a b)) (b (- c a)) (a (- c b))) treeforms)
(defprop multiplier ((c (s a b)) (b (// c a)) (a (// c b))) treeforms)

(defprop naxer ((c (max a b)) (b (arcinax c a)) (a (arcmax c b))) troeforms) F
(defprop minner ((c (min a b)) (b (arcinin c a)) (a (arcmin c b))) treef'orms)

*(dlefprop equality ((p (= a b)) (b (arc= p a)) (a (arc= p b))) treeforms)
(def'prop gate ((p (0-if-unequal a b)) (b (-> p a)) (a ->p b))) treeforms)

(defun tree-form (cell &optional (shallow ()
(require-cell cell)
(nuitnark cell)
(prog2 (tree-rorm-trace cell shallow)

(tree-form-gather cell shallow)
(tree-form-unmark cell)))

TAtiui: 3-15. The tree-form Funclim and Macros for Numerical Marks.

3.4.2. Choosing at Subgrapli is Guided by Decpendentcies antd licuer-Name I Icuristics

Ilie code for what itself is fairly simple ('Lablc 3-14), btit it tuses a rather complicated mark-
ing routine t ree -fo rm. This rotutine traces out an appropriate subgraph of the nietwork graph,
nmarking it out as it goes, then copies thc subgraph in dhe form of a -ISP) s-expression (actually a list
of cquations). and finally cleans tip by resetting all mnark bits.

The tree -form function, like fast-p rem ises and des ired-p remi ses, uses graph-
marking techniques. In this case, however, at three-state mark bit is reqtuired. because it is of interest
to know whether a node has beeni visited not at all, once, or more (hall once. '[buts the mark may be
thotught of as a reference count, possibly with at ceiling at 2. '[he mnacros numma rk, un numna rk,
and nunmarkp ([able 3-15) implement Stuch a reference count (with no ceiling) using the mark
component of the node's repository. '[he normal value of such a counter shIotIld be ziero, but for

compatibility with the other graph- tracing rou~ties these macros arrange to treat False as zero.

Also in 'Fable 3-15 is a little data base of algebraic forms to use when copyinig portions of
the network. Associated with each constraint-type is a table which, for each pill of a constraint,
illtustrates how to represent that pin) in termis of other pins (not necessarily all the others, though
that is so for our example constraint-types) in I tsi' prefix form. Thus for an adder the c pin canl be
represented ats the sum of a and b, the b pin ats the diff'erence of c and a. and so onl.)

7. Actually. these formals might more usefully be associated wilh indidual rules to handle special ca,;cs- For example,
in the case of multiplication by /ero. (he value of the other input need not enter into (he expression However, it
was done this way (the -kludge it in quickly by hanging it fiom a proper() list" technique) so as not to have to
again revise the format of defrule: after all, this data base is a specialized one purel) for the benefit of what.)

§ 3.4.2 Representingj , nbolic Results ill the Network 97

The function tree-form first marks the given node by using numnark; then it calls

tree-form-trace to trace out a subgraph of interest; next it uses tree-form-gather to

copy the traced-out subgraph as a iISP list of equations: and finally it asks tree- form-unmark

to clean up the marker counts.

"l e finction t ree - fo rm- t race (Table 3-16) recursively marks out a subgraph explaining

the %alue or non-valuc of the given node. The general idea is that if the rode has a vahuc, then we

are tracing out. hy folloim iiig the supplier chain, the computation which produced the value; but if
the node has no value, then We trace Out any single potential computation.

The node given to tree-form-trace must already have been marked by tie caller, and

determined by the caller to have been tle first time that node was marked. (This is trivially te

case for the top-level invocation of tree-form-trace within tree-form.) Tlie shal low

flag indicates whether or not a full tracing out is desired: if it is set, the tracing may stop when a

node with a 'alule or a global name is encountered: but it' not, then it ntst proceed until it can go

no firther. If the node has a value, then the supplier is examined. If it has an owner, then it is a pin

of that owner, and the computations for the sources (the input pins for the rule that conputed the

value for the supplier) are recursively traced, unless the shal l ow flag is true. If the supplier has

no owner, it is a constant, and as a special kludge it is marked again: the effect of this is to make it

appe;ar to be visited more than once, which will cause tr ee- fo rm-g athe r to try to find a flame

for it (see below). If the node has no value, then a supplier is artificially and arbitrarily chosen for

the cell. If the shallow flag is set, then die artificial supplier will preferably be a global cell; if not,

then preferably a pin of a constraint. If no other cell of the node will do. then as a last resort the

given cell is deemed to be its own supplier: if it is a pin, then tree-f orm-deep-trace is called

to trace its sources.

The function tree--form- trace-set takes a constraint and a list of pin names and traces

from all tile pins named. It first marks each of the pins. arid adds those visited for the first time to

a queuie; then all the nodes on the queue are traced. It is very important that all pins be marked

before any are traced-otherwise circular explanations can arise. The Function tree- f orm-tag

marks a node, then returns a list of the node (i.e., of its representative cell) if the node had

previously been unmarked, and otherwise returns an empty list.

IDigression.lxoking back on it, tree-form-tag might have been written more simply as:

(defun tree-form-tag (cell)

(numnmark cell)
(and (slnglenummarkp cell) (list cell)))

I wonder why I did it the more conplicated w.a? Pro hably bcansc I Vas thinking of ihe CI is being
iilnniarked before the Oisit. rat Cert (half as bcgin sirigI5 rii mark c a hcr the vis. I have dmk'hcd h, show
both versions here to indicate how one's point of view can alect the way a prograim is written.

(rnd of dirc "ion.)

98 CI IITR I'IIREII I)FPINI)I:NCIIS

(defun tree-form-trace (cell shallow)
(require-cell cefl)
(cond ((node-boundp cell)

(let ((s (node-supplier cell)))
(cond ((cell-owner s)

(or shallow
(tree-form-trace-set (cell-owner s)

(get (node-rule s) 'trigger-names)
shallow)))

(t (nummark cell))))) ;crock
(t (let ((cells (node-cells cell)))

(setf (node-supplier cell)
(or (if shallow

(or (tree-rorm-shallow cell cells)
(tree-form-deep cell cells shallow))

(or (tree-form-deep cell cells shallow)
(tree-form-shallow cell cells)))

(if (cell-owner cell)
(tree-form-deep-trace cell shallow)
cell)))))))

(defun tree-form-trace-set (owner names shallow)
(do ((n names (cdr n))

(queue '() (nconc (tree-form-tag (*the (car n) owner)) queue)))
((null n) (dolist (c queue) (tree-form-trace c shallow)))))

(defun tree-form-tag (cell)
(and (not (progl (nummarkp cell) (nummark cell)))

(list cell)))

(defun tree-form-shallow (cell cells)
(do ((c cells (cdr c)))

((null c) ()
(and (not (eq (car c) cell))

(globalp (car c))
(return (car c)))))

(defun tree-form-deep (cell cells shallow)
(do ((z cells (cdr z)))

((null z) ())
(and (not (eq (car z) cell))

(cell-owner (car z))
(return (tree-rorm-deep-trace (car z) shallow)))))

(defun tree-form-deep-trace (cell shallow)
(let ((treeform

(cadr (assq (cell-name cell)
(get (ctype-name (con-ctype (cell-owner cell)))

'treeforms)))))
(tree-form-trace-set (cell-owner cell) (cdr treeform) shallow)
cell))

TAnuE 3-16. Tracing Out a Suibgraph of Inlercst for what.

'lic function tree-form-shallow tries to find a global cell in the current node which is

not the given cell. Similarly, tree-form-deep tries to find a pill in the current node other than

§ 3.4.2 Representing Syibolic Results in the Network 99

the given cell (and if it finds one, it recursively traces the sources, using t ree - fo rin- deep - t race,

which determines the so'urces by looking at the tree forms data base.) l-Ach of thcse functions

returns the desirable pseudo-supplier cell, or false if no desirable cell is found. In this way they
signal success or failure, and the I.ISil or construct can be used to try one method and then another

in tree-form-trace.

The function tree- form-gather ('lable 3-17) retraces the subgraph, starting from the

same cell that tree-form-trace did. and copies the traced subgraph. It returns a list of equa-
tions. F-ach equation is represented as a list of the left-hand side and the right-hand side. "he left-
hand side is always the name of a cell: the right-hand side is a formula. I lence, taken in the correct

order (roughly last to first, though this property is not guaranteed), these equations represent a .set

of lORTRAN-style assignment statements for the computation.

The general idea is that the tree traced is copied as an aigebraic expression. Whcncvcr a node

is encountered which has been marked more than once, then the computation for that node must
be expressed as a sephrate equation defining a name for that node, then 2e nanme for that node

can be used in other equations to represent that node. 'Ibis is necessary to avoid duplication of
shared sub-computations. Nodes which have been marked more than once are called cuts, because
they divide die traced subgraph into portions which are trees in the strict sense. :Ach of these strict

trees can he represented by a nested algebraic expression, but each cut requires a new equation.
(The kludge in t ree-fo rm-t race mentioned above, where a constant is purposely marked an

extra time, is to delude tree-form-gather (actually tree-form-chase) into thinking that
the constant is a cut: this will force it to try to create an extra equation in order to give a name to
the constant.)

A queuing mechanism is used within tree-form-gather. Thle variable .cuts* contains

a queue of nodes which are cuts and which have yet to have equations computed for them.
At each iteration one cut node is dequcucd and the strict tree it heads is recursively copied by

tree-form-chase, which when it reaches the leaves of the struct tree may enqueue other cut
nodes. lhe variable *al Icuts. contains the set of all nodes ever enqueued onto *cuts.:

this is used to prevent the same cut node from being enqucued more than once. The list

extra-equations is a list ofequations added to by tree-form-chase when an equation

to name a constant must be created. This is kept as a separate list rather than adding these extra

equations directly to the list in equat i ons purely so that all such name,! Lonstants will appear at

the end of the final list of equations.

The first thing tree-form-chase does is check the supplier of the given node: this may be

a true supplier (if the node has a value). or an artificial supplier (if it does not). If the node has a

value and the shal low flag is set. then the value itself represents the node. Now top is a flag

indicating whether or not this call to tree-form-chase is on the root ofa strict tree (which may

occur if the node is the node given to what, or if the node is a cut node). Only if this is not the top

100 Ci lAPTFIRI IRUFi 1)1 *l[N1)I:N('I[IS

(declare (special *cuts* sallcutse sextra-equations.))

(defun tree-form-gather (cell shallow)
(require-cell cell)
(do ((*cuts* (list cell))

(oallcuts* (list cell))
(equations '())
(*extra-equations. * j)

((null *cuts*) (nreverse (append *extra-equationss equations)))
(let ((cut (pop *cuts*)))

(push (list (cell-goodname cut) (tree-form-chase cut shallow t))
equations))))

(dotun tree-form-chase (cell shallow top)
(require-cell cell)
(let ((s (node-supplier cell)))

(cond ((and shallow (node-boundp cell)) (node-contents cell))
((and (not top) (not (singlenuimarkp s)))
(cond ((constantp s)

(do ((c (node-cells s) (cdr c)))
((null c) (node-contents s))

(cond ((globalp (car c))
(cond ((not (inemq (car c) sallcuts.))

(push (car c) .allcuts.)
(push (list (cell-name (car c)) (node-contents s))

oextra-equationse))
(return (cell-namo (car c)))))))

(t (let ((best (do ((c (node-cells s) (cdr c)))
((null c) s)

(and (not (eq (car c) s))
(globalp (ca' c))
(return (car c))))))

(cond ((and (not (and (eq best s) (globalp s)))
(not (memq best sallcuts.)))

(push best .allcutso)
(push best *cuts*)))

(cell-goodname best)))))
((cell-owner s)
(let ((Lreeform (cadr (assq (cell-name s)

(get (ctype-name (con-ctype (cell-owner s)))
'treeforms)))))

(cons (car treeform)
(forl ist (nm (cdr treerorm))

(cond ((and (node-boundp s)
(not (memq n (get (node-rule s) 'trigger-names))))

(t (tree-form-chase (*the n (cell-owner s))
shallow
()))))

((globalp s) (cell-name s))
(t (node-contents s)))))

1AlIHl 3-17. Copying it Traced Suhgraph as a Scd of' Fqmmiations.

node docs tree -form-ch as e want to check for its being a cut nlode (visited lllorC than onice by
tree -form -tr ace). If it is a cut node other thani the top, then the supplier niay lie a constant or

§ 3.4.2 Reswiiig.Siub'wIcults in i/ic.cistwork 101

somlething else. If' a constant, then anl attemlpt is mnade to find a global cell " ithin thle sainc node, to

serve as it name for the constant. I I'one is found. that is returnedI and anl equation identifying tile
namne with the constant is added to *ex t ra - equa t ion s* (if it has not alread) heen added): but

if' one is not found, the constant itself is returned. It the Cut node's supplieir is not at constant. Ellen

at similar search 14r it globail nanc is nuade: either such at namne, or else the supplier*, naune (which
itf thie supplier is at pinl looks l ike (the foo b ar)). is chosen to name the cut node The niode is

citieuied ats at cuit node it' it has riot alIready CCer been queuled andI if' the su Ippl icr is no ta globial cell

artiliciali chosenl to be thie supplier (inl which case there is no %% ay to express that naiiie inl ternis of
somlething else. sot no equation is needed).

If the node is not to be treated ats at cut node, then there are three cases: tlie supplier maiy Ibe a
constant, at globall cell, or a Pinl. For at constant the %alue is returned: because tree - f orm-trace
always miarks nodes % ith constant suppliers ats cut nodes, this case canl only. arise Mi en thle top

flag is Set. Fo i w globhal cell. its n1.une is ret irued: this canl ol y occur w c thle global cell has

been chosen ats anl artif'ical supplier. For at pin., the associated expression formn is fetched front thle

tree f orms data base: then each input pinl namied iu the expression itorm is a-eciirsix ely chased
and the resulting expression filled in ats at sub-expression o1 the treeforin for this node. Ani excep-

tion is that if this node has at value, then the rule used to comnpute it is examlined, and if an input pinl

namned in thie expression tbii ii was not actu all v a t rigger tort i Iul, then " is filIled iii for that Pilli

inl thle formi. 'This is at crude attemnpt to take into account things like the miultiplication-by-izero rule.

F'or examiple:

(create ill multiplier)
(N:MIIIPLIER-44>

(what (the c in))
;CELL-47 has no value. I can express it in this way:

(THEf C M) ((THE A M) (THIE BMN))
(THE B M) =I (THE C M) (THlE A M))
(THE A M) =I (THE C M) (THE B M))

OKAY?

(This is anl examiple of at strange case that occurs when at node is at 'dead end" (a leaf oft' the

coiputation tree) for the tree - f orf- trace search, and the node's sole cell is apin. Illie pin

miust serve its its own supplier, and so tree-form-chase believes that this supplier mutst be

expressed as an expression. Ifglobal namtes were gien to (the a m) and (the b mn) then (his

anomialy wouild not occur. Alternatively. the tr'ee -f orim code could he inade mnore comnplex. bt

I didn't f'eel like doing this.)

(== (tho a mn) (constant 0))
;jAwakening <M:MULIL1-PL.IER-44> because its A got the Value 0.
.jIt:MULTIPLIER-44> computed 0 fori' ts part C from pin A.

;lAwakening <M:MULTIPLIER-44> because its C got the value 0.

DONE

102 (j'l APFFRT I RFl) l[l N

(defun tree-rorm-uniark (cell)
(require-cell cell)
(rond ((nwmiarkp cell)

(unnuniiark cellI)
(lot ((s (node-supplier cell)))

(and (cell-owner s)
(dolist (pin (con-values (cell-owner s)))

(tree-form-unnwark pin))))
(or (node-boundp cell) (setf (node-supplier cell))))

1 m 1;3-18. Rcscnting the' Mlak (Ct iliponciils for- t.ree -ftorm.

(what (tho c mn))
;The value 0 in CELL-47 was computed in this way:

(THE C M) '(.0 ?)
OKAY?

[Ihe explanaition ilidicaites that (the c m) is the product of zero) and soincthing %c don't niuch
care aboult (because die rule didn't).

(what (the b in))
;CELL-46 has no value. I can express it in this way:

(THE B M) (I0 0)
OKAY?

Certainly (the b m) 0/0, of course, this defines no particular value. but then again.
the b m) indeed has no0 particular valuec.

'Ihe function t ree - form- unla rk (Table 3-18) is similar to r ast - prem ises -unmark
('Table 3-11) and des i red-prem ises, -unina rk (TFable 3-12), % ith the additional featUrc that if
a miarked node is elicoulItered which has no value, then that node's supplier is reset to the niull
supplier: this reioes the artificial suppliers initrodulced by tree - foirm- trace.

3.5. Summary of Some Uses for Dependencies

Tlhe facilities described in this chapter illustrate the recording and sonic the uses of depend-
ency informnation. Recording dependencies ainou nts to remiembering (hie history of the local
propagation. All such histories niust be emibedded within tic structure of the constraint network:
the colliptitation histoiy canl be represented as the directions of in formiation flow within the niet-
work, plus the comnpu tational rules u~sed to coinptlte new values.

k'en if a coinpoltation has not beeln pei Oried. or has propagated valuies it) only as part of the
network, the structure of the network canl he Used to advantage, because it describes all possible
potential histories. I'liese potential histories, if few ill nuimber or careftlly chosen amrong. mnay be
useful for analy/ing (lie situti~ton.

§ 3.5 Suinmay of Some Lsesfir Dependencies 103

Three procedures fior examining a constraint network have been exhibited. Ie function why

traces a single actual comrputation step or all potential single computacion steps. 'l'e function
why -u I t imate l y traces through an entire actual computation tree (actually a dag-a tree. pos-
sibl, %ith shared subtrees) or through all possible potential trees, in elrect, and exhibits the leaves
of the trees. 'Ihc function what traces through an entire actual coimputation tree or a single.

carefully chosen potential tree, and exhibits that tree as an algebraic expression. indicating shared
subtrees by naming them and then defining the namie once to be the shared sub-expression.

llere are other ways of using the dependency intbrtration. For examplc. the notion dual
to that of the set of premises is known as the set of reprcussions--it is the set of nodes which
have a given node as an ancestor and which are not ancestors of any otler nodes. In other
%ords, the repercussions are the ultimnate consequences of a node. -unctions for tracing through

the network and locating the repercussions and then printing the findings in a manner similar to
why-ul t imately or what would be useful.

i .

I I/,, fi.sile. In tilt, brook.
V/ i/wi do I.% lotok anid look.

(Ii ntv rOic omie. hiti oni(t' ea r.
%hi dad drives a peanut wa~gon!

-- odn Ri t ht n Kerns

Chapter Four

Retraction

N tilt: CONS I RAI\N I sms tvm dec loped in Chaptcrs hA 0 and T hree. if a constaint is nmistakenly
.,connected to thie Aliong node. that's too had: tie user miust stilrt o~ ci- fromt scratch. If the User

wants to use a single net~kork ito explore several cases, to tinker % ith parameters to see thle resuilting
eff'ects, that also is too had. Once a \abtc has bccn compted flor a nodle, it is fixed in' all time.
Try ing to change it % ill only produice a contradiction, causing the signalling of iln it recov erahic
error.

Mechainisms, for retract ing \aluies will he developed ill chis cha pie r. I'This is not sn I i ma I r
of throwing awaa old xalus and inlstalling tiew 011eS. VaIlues associated \\illh other nodes miaa
haxe IWOn computed from thle retracted one, and these must also be re~tracted. \boico\ c. Mihen a1
contradiction occurs, it may he "Ca~ir from the scene of thle crime": thie conn iad icti mu iiuav in ol e
not premises hutl derived \alues. Retractinlg a deii~ed \aluec does no good the same %.tile wNill
he reecomnpu ted fiti n the premises. Inst ead, one of' the prem ilses if ol o* thle con tid i. lt.\ \allI ies
miust he retracted. Of course, the piciniise-tracing niach inera developed in) Chapltr I hi-ce k ill be oft
uise for this.

4.1. Forgiving Systems

Mfanl coliputer sa S.tel Is reqiire a grea t deal of Ii -g i i ug (I11ll ghI few desei- e it). h ilt hice I
mean i tat the system / fo rg ivi ng-o f iistak es. changes of muid, and so oil. Ide; ill y' one '\ otuld like
to he abhle to invert anl\ act ion with anm appro priatie cot Iiter[-act io n, an im tae thle state tif the systiin

104

§ 4.11 rgivitig .4slents 105

be as if die action had never taken place. I ler-e follow examiples of the s~stcin allowking tie user to

change his mind when somec action causes a contradiction.

4.1.1. ('on nect ing ('onfl ict ing Cells (Can Ca use (ont rad ict ions

L et uts re-enact the example of §2.3. where wc constructed ;i temipe-atureccoli ersion network,
equated centigrade to -- 40 (which of' course compoited -10 for- fahrenheit). and thea
equated Fahrenheit to 32.

(defun temp-converter (
(create add adder)
(create mult multiplier)
(create othermult multiplier)
(variable fahrenheit)
(variable centigrade)
(~fahrenheit (the c add))
(~(the b add) (constant 32)) O
((the a add) (the a otherinult))
(=(tile c othermult) (the c mult))
(~(the b othermult) (constant 5))
(~centigrade (the b mult))
(~(tile a mult) (constant 9)))

TEMP-CONVERTER

This is the samne definition for- a temperatureC cons erter we used in Chapters Iwo and Three,
packaged uip ats at single I ISP) function.

(temp-converter)
;IAwakening (ADD:ADDER-23> because its B got the value 32.
;jAwakening (OIHERMULT:MULTIPLIER-31> because its B got the value 5.

;lAwakening <MULT:MULTIPLIER-27> because its A got the value 9.

DONE

Now that the network has been instantiated, we equate cen t i g rade to -410. Rather than using

the constant construct, however, we shall use default in'-;tead. [his has rou1.ghly the same

effect, the only differenlce is (hat a default is tentati'e. %ilile a constant is r-elatively fixed (but only

r-elatively).

(~centigrade (default -40))
jAwakening (MULT:MULTIPLIER-27) because its B got the value -40.
I(NMULT:MUI-TIPl.IER-27> computed -360 for its part C from pins A, B.

;lAwakeninq (OTlIERMUL.T:MULIIPLIER-31) because its C got the value -360.
;I<OTHERMULT:MULTIPLIER-31> computed -72 for its part A from pins B, C.
;jAwakening (ADD:AODER-23> because its A got the value -72.
J(<ADD:ADDER-23) computed -40 for its part C from pins A, B.

106 C1I..PI'IER FOUR RvIFRACI]ON

FAHRENHEIT CENTIGRADE

: ADDenn (OORMLTHLIL ER1) beaueitAgt tevle-2

;jAwakening (MULT:MULTIPLIER-27> because its C got the value -360. -

DONE

TIhis process of COUrsC has computed -40 for f ah renhe it. (Sce Figure 4-i1. As before, circles
with horizoncal bars inidicate cons tan t valtics, in addition, def aulIt values arc drawn as plain
circles.)

(what fahrenheit)
;The value -40 in CELL-35 was computed in this way:

FAHRENHEIT 4-(+ C/ *9 CENTIGRADE) 5) 32)
CENTIGRADE 4--40

OKAY?

Now we come to the critical point we left off at in §2.3: what happens if f ah renhe it is not
equated to 32?

(fahrenheit (default 32))

;Contradiction when merging the cells
* <CELL-35 (FAHRENHEIT): -40) and <CELL-41 (DEFAULT): 32.
;;These are the premises that seenm to be at fault:

< CELL-40 (DEFAULT): -40> ==CENTIGRADE,
*<CELL-41 (DEFAULT): 32>.

;:Choose one of these to retract and RETURN it.
:BKPT Choose Culprit

§ 4.1.1 Forgiving Sysiepns 107

As before, the system has detected a conflict bem~een thc given Value and the value previously
comfputed for fahrenheit. *lhi time. hiowcvcr, thc systemi has determnined the prcenises of the
contficting Valucs and listed them., and asked LIS to choose which one to retract. (Note that the
name of it def aul t ccll is -'defaul t", not 'T'. Similarl), litter we Shall see that the name of a
constant cell is "constant".)

Now we are within at "breakpoint-, within which we may interact w~ith the Iti system in the
Lvimul manner. InI IpartiCular. we could in~ oke the why and what Lfunctions to explore the network
Motbe choosing at culprit. When e~entutlly at form (return form) is typed. then thie break-
point le~el is exited, and the %ahuic offiorn is returned and made m~ailable to the program which
caused the breakpoint. We vk ill oothis no%; lct us choose to retract the %aluc fo~r centigrade.

(return centigrade)

:lRetracting the premise (CELL-40 (DEFAULT): -40>.
:lRemoving -40 from CELL-40.
JlRemoving -360 from (THE C MULT) because (THE B MULT)==CELL-40.
;lRemoving -72 from (THE A OTHERMULT) because (THE C OTHERMULT)==(THE C MULT).
;jRemoving -40 from (THE C ADD) because (THE A ADD)==(IHE A OTHERMULT).
;jAwakening <ADD:ADDER-23> because its C lost its value.
;lAwakening <ADD:ADDER-23> because its A lost its value.
;jAwakening <OTFERMULT:MULTIPLIER-31>--because its A lost its value.
;jAwakening <OTHERMULT:MULTIPLIER-31) because its C lost its value.
;IAwakening <MULT:MULrIPL[ER-27> because its C lost its value.
;jAwakening (MULT:MULTIPLIER-27> because its B lost its value.
;lAwakening (ADD:ADDER-23> because its C got the value 32.
;l<ADD:ADDER-23> computed 0 for its part A from pins B, C.
;jAwakening <ADD:ADDER-23> because its A got the value 0.
;IAwakening <OTHERMULT:MULTIPLIER-31> because its A got the value 0.

;I<OTHERMULT:MULTIPLIER-31) computed 0 for its part C from pins A, B.
:jAwakening (OTHERMULT:MULTIPLIER-31) because its C got the value 0.
;jAwakening <MULT:MULTIPLIER-27> because its C got the value 0.

;I<MULT:MULTIPLIER-27> computed 0 for its part B from pins A, C.
;jAwakening (tULT:MULTIPLIER-27> because its B got the value 0.
DONE

Whew! After die value -40 was retracted for centigrade, all of the valtIeS which were
comp~uted f'rom that value were recursively removed. Tlhen all the constraint devices which had
values retracted from their pins were awakened, in thie hope that they could provide a value for the

1. Ihis Nx yet another example of how pleas~ant itis to 10 plcmcent a to% %)mcni by emnbedding i n a more complete
system such as iLisp. Rather than hav!ing the interaction liniittd to merely a choice fromi a mnenu, the user can be
Smeni tihe opponunily to pcrform any computation before making the decision.

108 CII1AP1 FR FOUR 10i IRACH lON

FAHREHEITCENTIGRADE

0r
FR .- 2 Rc~topoUtio r* en pta i r (ui crstBn

32ARNEI -3

(what cahenid)
;The value 02 in CELL-3 was computed in this way:

FAHRENHEIT +. 32
OKAY?

Everything is just as if we had originally given the Value 32 to fah renhe i t, and had never given
dhe valuec -10 to cen t igrade in the first place.

When the contradiction Occurred above, the comiptited value tbor F ahre nhe it had ben

derived not onily frorn the valtue for cent ig rade, but also fromn thie constants 5. 9. and 32.
1 Iowevcr, these constants wcre not listed amiong the choices forl retraction. 1Iis illustrates (lhe one

difliercncc between the constant and doefaul1t constructs-if a contradiction is derksed from
at least one default value, then only de faul1t values are considered for rolractioin. If the

2 I'resutmNl 011i; S WI Uld he thc e a1Loe hait mas ret meted I towewiC. ai colistrat t des icc might he il stibsid ar)
supie~tr ol1 the %attie wthite thai. the pnnmry stipplier Wheni the pittiar N tipllit is ilknwit facted. Nuhbrdiai)
suppiers then hasce a chainc to hcocrat the prinmor mi ptcr, 11111S. MOt he 13; tlttt ee iing tiIt111 peJW4st i heat ins for
a %alue, as inl IStaltn 19)77j. It o.%Ic 197MaJ. It)Ic 0~78h]. IMcAlleste 19791. and It os Ic \le 191 this st et; nerctv
rccoitipuics wtie when ttecessaf) (pteCS(tlahl) itivol ing onl. h a silngle Collt111ui i. ato step inl each caw)j

§4.1.1 1 orgiving Systemns 109

FAHRENHEIT CENTIGRADE

_a I

Fict~uw4-3. Aw ,thcr Rcc)mptt~ttionofa I cnipcratttre ('onscrsion.

contradiction rcsts solely on constant %alues, lio~ecer. then the systemi will considcr retracting a
constant. 3,1lo ffirthcr illuistratc the distinction, let uts now fix cen t i g rade as the consiant 20.

('centigrade (constant 20))

*.Contradiction when merging the cells
* (<CELL-36 (CENTIGRADE): 0) and (CELL-42 (CONSTANT): 20.

;IRetracting the premise (CELL-41 (DEFAULT): 32.
IlRemoving 32 from CELL-41.
;IRemo ving 0 from (THE A ADD) because (THE C A1.D)==CELL-41.
;IRemoving 0 from (THE C OTHERMULT) because (THE A OTHERMULT)==(THE A ADD).
;lRemoving 0 from (THlE B NULT) because (THE C MULT)==(THE C GIHERMULT).
;jAwakening <MULT:MULTIPLIER-27> because its B lost its value.
;IAwakeninq <OTl1ERMULT:MULIIPL[ER-31) because its C lost its value.
;jAwakening <MUL-T:MULTII"LIER-27> because its C lost its value.
;jAwakening <ADD:ADDER-23> because its A lost its value.

;jAwakening (OTIIERMULT:NULTIPLIER-31> because its A lost its value.
;jAwakening (ADD:ADDER-23> because its C lost its value.
;IAwakening (MULf:t'ULTIPLIER-27> because its 8 got the value 20.
:j(MUL-T:MULTLPLIER-27) computed 180 for its part C from pins A, B.
;jAwakening <OTHERMULT:MULTTPLIER-31> because its C got the value 180.

;I(OIHERMULT:MULTIPI.IER-31> computed 36 for its part A from pins B, C.
;jAwakening (ADD:ADDER-23> because its A got the value 36.
;I<ADD:ADDER-23> computed 68 for its part C from pins A, B.
;jAwakening <ADD:ADDER-23> because its C got the value 68.
;jAwakening (OTIIERMULT:MULTIPLTER-31) because its A got the value 36.
;jAwakening (MULT:MULTIPLIER-27> because its C got the value 180.
DONE

3 One oight atrguet that this should constitute a hard error as before~ However. the ability to retract a constant is
nt difficult to proide. anid the x) skin canm ifooni the user or the situation and let Iwo decide whether or not to
tanpcr with a 'constant of the universe".

110 CIIA~srI:R FOUR RIIRA01 IN

It doesn't show clearly here, but ill fact the conflict is between the new valuc 20, a constant, and

die old value 0, which was derived from \ arious constants and a single dlef aulIt valuc. 'b

system concluded that as there was precisely one de faulIt valuc inwoiv'd, it might as well retract

it automatically and not even b)other us with it.

(what fahrenheit)
:The value 66 in CELL-35 was computed in this way:

FAHRENHEIT ~-(+ (/ .9 CENTIGRADE) 5) 32)
CENTIGRADE 4-20

OKAY?

Now f ahre n he it = 68, computed from ce n tig rade =20 (Figure 4-3).

lf we now try to equaite f ah're nh ei t to a de taulIt v'alue, tie system "bounces back". 'Thle

default value comes into conflict with hard constants, and so is immediately rejected.

(~fahrenheit (default 41))

Contradiction when merging the cells
* (CELL-35 (FAHRENHEIT): 68> and (CELL-43 (DEFAULT): 41>.

;IRetracting the premise <CELL-43 (DEFAULT): 41>.
zIRemoving 41 from CELL-43.
DONE

If we really want f ahlrenhe it to be 41. we had better fight constants with constants!

(~fahrenheit (constant 41))

;;Contradiction when merging the cells
< CEL[-35 (FAHRENHEIT): 68> and (CELL-44 (CONSTANT): 41).

These are the premises that seem to be at fault:
< CELL-44 (CONSTANT): 41),
(CELL-37 (CONSTANT): 32>,
(CELL-42 (CONSTANT): 20> ==CENTIGRADE,
< CELL-39 (CONSTANT): 9>,
< CELL-38 (CONSTANT): 5>.

Choose one of these to retract and RETURN it.
;BKPT Choose Culprit

TIhis contradiction involves only constant values, and so one of them must be chosen for retrac-

tion.

(return centigrade)
;lRetractlng the premise <CELL-42 (CONSTANT): 20.
;lRemoving 20 from CELL-42.
;lRemovlng 180 from (THE C MULT) because (THE B MULT).:CELL-42.
;(Removing 36 from (THE A OTHERAIULT) because (THE C OTHERMULT)==(THE C NULT).
;lRemovlng 68 from (THE C ADD) because (THE A ADD)%=(THE A OTHERNULT).

§ 4.1.2 Iorgivin, Ssieiiis III

;jAwakening (ADD:ADDER-23) because its C lost its value.
;jAwakening <ADD.:ADDER-23> because its A lost its value.
;lAwakening <OTHERMULT:MULTIPLIER-31> because its A lost its value.
;IAwakening <OTHERI4ULT:MULTIPLIER-31> because its C lost its value.
;lAwakening <MULT:MULTIPLIER-27> because its C lost its value.
;jAwakening <MULT:MULTIPLIER-27> because its 8 lost its value.
;IAwakening <ADD:ADDER-23> because its C got the value 41.
;I<ADD:ADDER-23) computed 9 for its part A from pins B, C.
;jAwakening <ADD:ADDER-23> because its A got the value 9.
;lAwakening (OTHERMULT:MULTIPLIER-31> because its A got the value 9.
;j<OTHERMULT:MULTIPLIER-31> computed 45 for its part C from pins A, B.

;jAwakening (OTIERMULI:MULTIPLIER-31> because its C got the value 45.
;jAwakening (MULT:MULTIPLIER-27> because its C got the value 45.
;I(MILT:MULTIPLIER-27) computed 5 for its part B from pins A, C.
;IAwakening <MULT:MULTIPLIER-27> because its B got the value 5.
DONE

TIhe constant 20 equated to cent igrade has been retracted. and a ncw value derived from

fahrenheit.

(what centigrade)
;The value 5 in CELL-36 was computed in this way:

CENTIGRADE II((-FAHRENHEIT 32) 5) 9)J
FAHRENHEIT 41

OKAY?

4.1.2. P~ropagation IPotenialy Poses ProleInis ror Predefined Pins

Contradictions can arise not only when equating two nodes, but also when a constraint device
calculates a valuc for a pin in conflict with an cxisting value. As an exarnple of this, consider the
network of Figure 3-3 (page 92) for constraining four points to be equally spacced. Assumc that one
has been constructed now. TIhen we perforin the cquatings p1 I 0, p3 = 6. and p2 =4, which

of couarse are not consistent.

(~p1 (default 0))
;jAwakening <A12:ADDER-89> because its A got the value 0.
DONE

(=p3 (default 6))
;jAwakening (A34:ADDER-97> because its A got the value 6.
;jAwakening <A23:ADDER-93) because its C got the value 6.
DONE

So far so good ...

(p2 (default 4))

112 CI lAP IIR FOUR IU I lMION

2 Cont radjiction! 2

__ __ L-Ao:4-4. A (01Mtra1,10hcIIitmabur-l'int Sp~itinNdwork.

;jAwakening (A23:ADDER-93) because its A got the value 4.
;j(A23:ADDER-93> computed 2 for its parl. B from pins A, C.
;jAwakening <A12:ADDER-89> because its B got the value 2.

*,*Contradiction in <A12:ADDER-89) among these parts: A=O, 8=2, C=4;
*, it calculated 2 for A from the others by rule ADDtER-RULE-3.

*,,These are the premises that seem to be at fault:
< CELL-l01 (DEFAULT): 0> Pt,
< CELLIO03 (DEFAULT): 4> P2,
< CELL-102 (DEFAULT): 6> P3.

Chioose one of these to retract and RETURN it.

at taluc fir p 1 which wits not colisistent ~ith the exisling defa'ult valuie. The sx stein has indicatcd

that dhe adder cornputed the value 2. Of Cotisc, thle valuce 0 miight be the correct one, and one of

the premnises for p2 or p3 mnight lbe at fault. We should exam ine thie Computaitions of all thle pinis

involved.

(what (the a a12))
Thle value 0 in CELL-90 was computed in this way:
* (THE A A12) -- 0

OKAY?7

Actually. in this case Ac wouild hai~c preferred thait what show uts at global lamle foi thie Conlstanlt

but it thinks that (the a a 12) is (lhe prelerreod namie t'on the foo t niode bcauJSe that is Whatl We

gave~ it. Fixing this is, left as an exercise for the reader.4

(what (the b a12))
;The value 2 in CELL-91 was computed in this way:

4 lio i you just halie it when ant :11 it teases sonet iinig ,is -an "excie fr the icader'

§ 4.1.2 Iorgilvit g .Sy'Siciiis 113

(TH B2 412 P3 (6 P4P

P2 + 4j2

Now tistelsussoeing:-5 (eetng b%% a12 is ie ditlernccbtwc Sp3l aNdtwor.

(THE C A12) P3 4 2

OKAY?

We Could choose to retract any of the premises, let uts in fact choose p 1.

(return p1)
;IRetracting the premise <CELL-10t (DEFAULT): 0>.

.jAwakening <A12:ADDER-89> because its C got the value 4.
DONE

(MIuch of thc tcdiOuIs trace output has becen omlitted here, sixteen lines were deleted. H-enceforth

most c trace output will be similarly condensed, and omhissions indicated by ellipses.)

(what pl)
;The value 2 in CELL-85 was computed in this way:

PI -(P2 (- P3 P2))
P2 44
P34-6

OKAY?
(what p4)
;The value 8 in CELL-88 was computed in this way:

P4 *- (g. P3 (- P3 P2))

114 CI IAVITIYR FOUR RI: IRA C'ION

2 2

FIGt'Ri 4-6. RudtmndaLt Preises for ,a Fotir-Ptmtn Spacing Network.

; P34-6
; P224

OKAY?

New values for p1 and p4 have been computed in tcrrnsof p2 and p3. (Sec IUigure 4-S.)

Multiple contradictions can arise in a single interaction, if thc network contains redundaint
reasons for current 1ales. For cxample, in a fresh foiur-point-spacing network, this might occur:

(== p1 (default 1))
;JAwakening (A12:ADDER-69) because its A got the value 1.

DONE
(= p3 (default 5))

DONE
(= p2 (default 3))

DONE

The three values for pl. p2, and p3 constitute redundant information for the network. Given

pl and p2, p3 could have been deduced; given p2 and p3, pl could have been deduced.

(However, p2 was not deduced given pl and p3 because that cannot be done by local propaga-

tion, algebra is required. Once a correct value for p2 was supplied, however, the system verified
it.)

(what p4)
;The value 7 in CELL-68 was computed in this way:

P4 4- (+ P3 (- P3 P2))

P3 -5
P2 -3

OKAY?

S - -

§ 4.1.2 F~orgiving Systemns 115

The Naluic 7 %%as cornputcd for p4 (Uigure 4-6). If now p4 is equated to 6, a contradiction must
occur.

(~p4 (default 6))

Contradiction when merging the cells
< CELL-68 (P4): 7> and <CELL-84 (DEFAULT): 6).

These are the premi ses that seem to be at fault:

< CELL-82 (DEFAULT): 5) P3,
*<CELL-83 (DEFAULT): 3> P2,
*<CELL-84 (DEFAULT): 6).
Choose one of these to retract and RETURN it.

lIndeed, ais what indicated, tile old value of p4 depended onl p2 and p3. We choosc to retract

p2.

(return p2)
JlRetracting the premise (CELL-83 (DEFAULT): 3>.

;iRemoving 3 from CELL-83.
;lRemoving 2 from (THE B A23) because (THE A A23)==CELL-83.
;IRemoving 7 from (THE C A34) because (THE B A34)==(THE B A23).
;IAwakening <A34:ADDER-77) because its C lost its value.

;lAwakening (A34:ADDER-77> because its C got the value 6.
;l(A34:ADDER-77) computed I for its part B from pins A, C.
;iAwakening <A12:ADDER-69> because its B got the value 1.
;l(A12:ADDER-69> computed 2 for its part C from pins A, B.
;lAwakening <A23:ADDER-73> because its A got the value 2.

Contradiction in (A23:ADDER-73> among these parts: A=2, 8=1, C=5;
it calculated 4 for A from the others by rule ADDER-RULE-3.

These are the premises that seem to be at fault:

< CELL-8l (DEFAULT): 1> P1,
< CELL-82 (DEFAULT): 5> P3,

*<CELL-84 (DEFAULT): 6> P4.
Choose one of these to retract and RETURN it.

While p2 supported the value for p4, tie redundant value in p1I also supported it indirectly, and
now the cornpulation has run afibul again. Thbe systemn is not satisfied until tile network is totally

consistent. We could now change our minds and retract the assignment of6 to p4, but hcrc wc will
proceed to retract pl.

(return p1)
;IRetracting the premise <CELL-8i (DEFAULT): 0).
;lRemoving I from CELL-al.
;lRemoving 1 from (tilE B A12) because (THE A Al2)==CELL-8l.
;jRemoving 2 from (THE C A12) because NIL==(THE B A12).

116 C ItAwI I t [OUR 10 PAM-1tON

34

FIGaUm 4-7, SjmjiU , ('0111 nSaF(Lr'I~lS~ti~Nc~ok

;jAwakening <A23:ADDER-73> because its A lost its value.

;lAwakening <A34:AOOER-77) because its 8 got the value 1.
DOME

The end resuilt is pictured in Figure 4-7.

4.1.3. Erroticous Fqjualiigs I:Iicit Exectition Fxceptions VFiiially Fasily

Until now it has beeni implicitly assumed that (lie constraint nem~ork, once constructed, is
fixed. All computations are relatie to this fixecd stuc tlir, and anly errors are a t ii ted to thie
chosen l)Ieiflies rather than to thle network structure. P~remises can hie retracted, hutl not connec-
tions. Ihe retraction mchlanism exhibited Mim~e opierates not by disconnlecting at rejected constant
cell fRom thie rest of thie network. but by "denaturing- the constanlt. forcibly removin g its valuie blit
leaving it connected ats at useless appendlage (useless because it has no valuie and no namie).

Hovee are introduiced two functins di ssol1ve and disconnect fom, undoing connections.
When given a cell. di ssol ve will undo the connlections" amlong a/ithe cells ofithe node to which

thle given cell belongs. Onl thle other hiand. d isconnec I causes at specified cell to lie uinhooked
from its niode. leai ing any others connected together. Neither of these is at trute in erse for the
clinstrimetnln: for example, if one saiys (a b) and then (di sc onnec t a). thle neN situiation
%kill he identical to thie original only if' a had not pre~ iolusl\ beenl Connected to any other cells. If it
had, thent tho se cellIs " ill no% iall be con10nectIed to b . It is imiipo ssile to pro\ ide if . my to p ro% ide

af truec in Crse Fo r z=gi en thle coirre nt datta sm i telores used ill thle im p)AVm ellta io m. because not

eniough in iiommfa t (ii is retai ined (06ru ex *onple. no in Fi rlfio in w lvii is reco rded 1,01. redtmii d.11n
equatings). I iter we will see way~s offirom iding for this.

§ 4.1.3 l.'rgiving yslen is 117

P1 P2 P3 P4

FICLRIF4-8. A Parliall. DiM .micd Four-Point Spacing Network.

To illustratc the use of dissolve and di sconnect, consider yet another fresh four-point

spacing network. Initially p4 has no valu, and can be expressed in ternis of p 1, p2, and p3.

(what p4)

;CEI.L-92 has no value. I can express it in this way:
P4 = (+ P3 (- P2 P1))

OKAY?

If the connection between die b pins of the thrce adders is now dissolhed, then of course p4 can
no longer be expressed in terms of the difference between p2 and p 1.

(dissolve (the b a12))

;JDissolving (THE B A12), (THE B A23), (THE B A34).

DONE

See Figure 4-8.

(what p4)

;CELL-92 has no value. I can express it in this way:

P4 z (+ P3 (THE B A34))

OKAY?

If now a default value is given to (the b a12), it will not aIfect (the b a23) be-

cause they are no longer connected.

(== (the b a12) (default 3))

;IAwakening <A12:ADDER-93> because its B got the value 3.

DONE

(what (the b a23))

;CELL-99 has no value. I can express it in this way:
(THE B A23) (P3 P2)

OKAY?

I.

118 Ci iAwii j FOUR RH RAcrION

of3 36o 2ad6b 3

DONE

(== pte1 3 (default))

;IAwakening (A2:AtJDER-97) because its A got the value 0.

DONE

T1hc resuilt is shown in Figure 4-9.

(what p3)
;The value 6 in CELL-91 was computed in this way:

P~3 4-(+ (+ P1 3) 3)

PI 0
OKAY?
(what p4)

;CELL-92 has no value. I can express it in this way:
P4 =(+ 6 (THE B A34))

OKAY?

No value was computed fo;. p4 becauise (the b a34) still has 0(o value. Suppose we were

to connect (the b a34) to p2 (which produces something other than a four-point spacing

network!).

(== (the b a34) p2)
;jAwakening <A34:ADDER-101> because its B got the value 3.
;I<A34:ADDER-101> computed 9 for its part C from pins A, B.

§ 4.1.3 Forgiving Syestens 119

P1 0 P2 P3 P4

9

3

Fi(;t Ri 4-10. A Fotir-koint Spacing Nctwourk Modified bh Reconnection.

;lAwakening <A34:ADDER-101> because its C got the value 9.

DONE

See Figure 4-10.

(what p4)
;The value 9 in CELL-92 was computed in this way:
; P4 (- (+4 P2 3) P2)
; P2 4- (+ PI 3)
; P1 '0
OKAY?

Now p4 has the value 9 expected for equal spacing, but that value was computed in a rather
unorthodox fashion! Let us undo the connection.

(disconnect (the b a34))
;10isconnecting (THE B A34) from (THE A A23), (THE C A12), P2.
;IRemoving 3 from (THE B A34).
;IRemoving 9 from (THE C A34) because of NIL.
*jAwakening <A34:ADDER-101> because its C lost its value.
;IAwakening <A34:ADDER-1O1> because its B lost its value.
DONE

When (the b a34) was disconnected from the p2 node, it was disconnected from the source

of its value. Hence the value 3 was removed from it. and thus the value 9 derived from it was also
removed from (the c a34) ==p4. The network has now been restored to the situation of Figure
4-9.

(:= (the b a34) (the b a23))

- - - * 4 -',-

120 CHII.srA FOUR R I I R ACI ION

i 0 P2P3P

FiOL RI:4-lI. A 1jscftI% Nicililicd Four-Point Spaicing Nctw irk.

;jAwakening <A34:ADDER-101> because its B got the value 3.
;I(A34:ADDER-lO1> computed 9 for its part C from pins A, B.
;lAwakening (A34:AODER-1OI> because its C got the value 9.
DONE

Now (the b a34) hais bcen conniected to a mioie lcgitir-nate sourIceof'3. This network makes
soineC sense.: it spaces p2. p3, and p4 equally, and allows it dilterent spacing to bec specified

between p1I and p2. IThus the disconnection facility can be used to mnakc useful inodificziiions to
an existing net work.

D~isconnecting (the b a 12) will sever the connection with the defauIlt valuc 3. T[his will
cause retraction ofnmany compu)Lted valueCs.

(disconnect (the b a12))
;10isconnecting (IE II A12) from CELL-105.
;lRemoving 3 from (THlE B A12).
;lRemoving 3 from (THlE C A12) because of NIL.
;lRemoving 6 from (THE C A23) because (THE A A23)=z(THE C A12).
:lRemoving 9 from (THE C A34) because (THlE A A34)=m(THE C A23).
;IAwakening (A34:ADDER-1O1) because its C lost its value.

DONE

This situation is shown in F~igure 4-Il1.

If now (the b, a 12) and (the b a23) arc connected, the spacing network will have
been completely restored. and p4 can he comiputed fromt p 1 -0 and the given spacing 3.

(~(the b a12) (the b a23))

§ 4.2 Ipl'enniion of IReaction ,echa,,isin 121

Pi 01 P2 P3 3 r P4

FIGCL-~4-12. A Llscfiudl. N1 Klilicd Foulr-Point Spaicing Network.

DONE
(what p 4)
;1he value 9 in CELL-92 was computed in this way:
; P4 4- (+ (+ (+ P1 3) 3) 3) F,

OKAY?,

"lbis finial happy circumnsancc appears in Figure 4-12.

4.2. Implementation of Retraction Mechanisms

Thie primary visihlc dill'crcncc in tihc languagc, asidc From the addition of extra capabilities
such as dissolve, is tihe ncw distinction bctween default and constant valucs. Internally
thcy arc thc same. cxcept tha t each ccli is taggcd as Ito which type it is, for" those routincs which care
to check fr the distinction.

The changes for constant, def'ault. constantp, and globaip appear in Table 4-1.
"lle rundlion formerly called cons tantL has been renamed i n iti ali zed-cell , and given an
extra parameter reason, which will be the symb~ol constant or default. TIhe functions of
those names simply call in i ti alIized-cell . When the cell is generated by gen-ce 11, the
name given to the cell is not "'?"as bef'ore, bitt rather the symbol con s tan t or tie f'aul1t:;
this was originally intended to make the distinction visible whon such a cell is printed, but turned
out to have an important application in the retraction process. Tlhe predicates cons tan tp and

gi] obai p. which operatle by checking the name ol1" the cell, require changes for the new naming
convention. F~inally, recall that the rule component ofanmnode was fo(rmlerly only used if the stipplier

3 6-

122 CIIAPII IR FOUR RFIRACION

(defun constant (value)
I (initialized-cell value 'constant))

(defun derault (value)

(initialized-cell value 'default))

(defun initialized-cell (value reason)

(let ((cell (gen-cell reason)))

(setf (node-contents cell) value)

(setf (node-boundp cell) t)

(setr (node-supplier cell) cell)

(setr (node-rule cell) reason)
cell))

(derun constantp (cell)
(require-cell cell)

(and (null (cell-owner cell)) (memq (cell-name cell) '(constant default))))

(defun globalp (cell)
(require-cell cell)

(and (null (cell-owner cell)) (not (meinq (cell-nalne cell) '(constant default)))))

Compare this wilh Table 3-2 (page 76).

TAl.I 4-I. Implenentati n of ('onstnt and Default Cells.

for the node was a pin, because if the supplier was a constant then the "rule" for the value was self-

evident. Now, whel the supplier is a cons tanit or default cell, which kind is recorded as tie
nile. (This information could still be derived frorT the cell name, but it seems cleaner to express it

as the rule.)

The handling of contradictions must be changed to allow for retraction. Contradiction han-

dling is now centralized in the function p rocess -can t rad i ct i on. The function merge -va I ues

is changed to call process-contradiction on discovering a conflict (after printing a

message). However, this is no longer considered to be a fatal error that brings the system to

a grinding halt. It is assumed that process-contradict ion may have fixed the problem

(but only maybe!-if the conflicting values depended o redundant premises, then removing one
premise may only have caused the retraction and recolnputation of the conflicting value from other

premises). Thus, when process-contradict i on returns, the merge must be retried.

If a merge discovers a contradiction, then the resolution of that contradiction will require

changing the values of the cells involved. Hence it is important in == not to decide which of the

cells is bound until after merge-values has been called. (This is a subtle interaction which I

missed at first!) Thus == has been rearranged to call merge-val ues first thing, and save the
result in newv al. Also, the decision as to which repository to use (and thus which cell of tile

merged node should become the supplier) has become more complicated: as a heuristic, if one

supplier is a constant (as determined by looking at the rule), then that is preferred to anything

§ 4.2 Impleineniafivi, of Reiraction Mechanismns 123

(defun (celli 'ell2)
(require-cell ceill)
(require-cell ce1l2)
(Gr (eq (cell-repository ceill) (cell-repository cell2))

(let ((newval (merge-values celli cel 12)))
(let ((ri (cell-repository ceill))

(r2 (cell-repository cell2))
(cbl (iode-boundp cell!))
(cb2 (node-boundp cell2)))

(let ((r (cond ((eq (rep-rule ri) 'constant) ri)
((eq (rep-rule r2) 'constant) r2)
((or (not cb2) (and cbI (ancestor ceill cell2))) ri)
(t r2)))

(rcells (append (rep-colls ri) (rep-cells r2))))
(setf (rep-contents r) newval)
(let ((nowcomlers (if cbl (if cb2 '() (rep-cells r2))

(if cb2 (rep-cells ri))))
(setr (rep-cells r) rcells)
(dolist (cell (rep-cells (if' (eq r rl) r2 ri)))

(seti' (cell-repository cell) r))
(awaken-all newcomers)
'done))))))

(defun merge-values (celli cell2)
(require-cell celli)
(require-cell ce1l2)
(let ((vall (node-contents celli))

(va12 (node-contents ce1l2)))
(cond ((not (node-boundp ceill)) val2)

((not (node-boundp cell2)) vail)
((equal vail val2) vall)
(t (ctrace "Contradiction when merging -S and -S." celli cell2)

(process-contradiction (list ceill cell2))

(merge-values celli cell2)))))

(defun awaken-all (cells)
(dolist (cell cells)

(require-cell cell)
(cond ((cell-owner cell)

(ctrace "Awakening -S because its -S
:[lost Its value*;got the value 'S],

(cell-owner cell)

(cell-name cell)

(node-boundp cell)
(node-contents cell))

(awaken (cell-owner cell))))))

Compare this with'Tablc 3-3 (page 77).

TABI.Ii4-2. Dclyiiig Equtaliiig IXcisioals Until after the Merge.

else. Thbis cannfot cause circttlaritics, becauise nothing is an aincestor of a constant. Thei reasonl for

this hecuristic will be discussed below.

124 CI IAP ITR I-oUR RItAOI ON

(defmacro setc (celiname value)
,(process-setc *me* I,cellname ,(symnbolconc celiname "-CELL") ,value *rules))

(defun process-setc (.me. name cell value rule)
(require-constraint .me.)4
(require-cell cell)
(let ((sources (get rule 'trigger-names)))

(cond ((not (node-boundp cell))
(ctrace "-S computed -S for its part -S-[-2.; from pin-P -(S-t,}]

*me. value name sources (length sources) sources)
(setf (node-contents cell) value)

(setr (node-boundp cell) t)

(sctf (node-supplier cell) cell)
(setf (node-rule cell) rule)
(awaken-all (node-cells cell)))

((not (equal (node-contents cell) value))
(let ((triggers (torli st (pinname sources) (*the pinname *me.))))

(ctrace "Contradiction in -S-@[among these parts:

-%;I it calculated -S for -S

.me. from the others by rule -S."

(forlist (cell (cons cell triggers))
(require-cell cell)
(list (cell-name cell) (node-contents cell)))

value
(cell-name cell)
rule)

(process-contradiction (cons cell triggers))
(do ((x triggers (cdr x)))

((null x) (process-setc *me. name cell value rule))
(or (node-boundp (car x)) (retumrn))))))))

('omparc this with' [able 3-8 (page 82).

L TA III ii 4-3. IHandlinig Cn I radict ions i s et c.

Thlc ctrace message printed by awaken-allI is changed becatuse OWnerIs may now be

awakened not only bccausc a pin has ne~wly received a Value. but because a pinl has lost a valuc (in
which case tile awakening is at request to recolliptite it if possible).

§ 4.2 lmp/einehtioniw oj'Renrat-iolt AIchlanislits 125

(defmacro contradiction vars
-(signal-contradiction (1list @8(forli1st (v vars) (symbolconc v "-CELl."))) sme*))

(defun signal-contradiction (cells constraint)
(require-constraint constraint)
(ctrace "Contradiction in -S-@[among these parts: Th(S"-S-t, -)-j."

constraint
(forlist (cell cells)

(require-cell cell)
(list (cell-name cell) (node-contents cell))))

(process-contradiction cells))

.I(defuan process-contradict ion (cells)
(let ((premises (premises* cells)))

(let ((losers (do ((p premises (cdr p))
(z I() (if (eq (node-rule (car p)) 'default)

(cons (car p) z)
z))

((null p) (or z premises)))))
(cond ((null losers) (lose "Hlard-core contradiction!'))

((null (cdr losers))
(retract (car losers)))

(t (retract (choose-culprit losers)l))))))

(defun choose-culprit (losers)
(format t ";;These are the premises that seem to be at fault:-

(forlist (p losers)
(cons p (piapcan #,(lambda (c)

(and (globalp c)
(list (cell-name c))))

(node-cells p)))))
(formnat t "-%;; Choose one of these to retract and RETURN it.")
(let ((culprit (break "Choose Culprit")))

(do ((z losers (cdr z)))
((null z) (choose-culprit losers))

(and (eq (cell-repository (car z)) (cell-repository culprit))
(return (car z))))))

C'ompare this with F'able 2-Il (page 57).

1AIIH; 4-4. Processing and Rcco~eniig fioni ('onItrad ict ions.

The processinlg for thc setc conIstruct rem~ainls thc samie in the tustual case (scc Table 4-3).
When a contradiction is (klcted. hIoweverI. latlse tile %altie comnputed b) at constrainit connficts

widh a value already oil the pin, then process-contradict ion is called, givinlg it at list of

thc conflicting cells. When proCess-calntiad iCt ion retulrns, then~ there is at qulestionl as (o

whether to install tile valuec in thc pill afiter all-tlc processing of thie contradiction ll ay have

remloved the support for thlaE value. Henlce process-setc ellecks all ofithe trigger pins bor the

rtlle. and only retries thc se tc operationl if the~y all still have values.

......

126 CIAP Il:R FOUR R1RAUIION

('lliere are serious problems retnaining, however. 1lic assumption here is that no new values

will be asserted within process -cont rad ict ion. but only old ones retracted. This requires
the assumption that the user will not assert new equatings within the breakpoint prosidcd by

signal-contradiction, but onl use probing functions like what. If the user were to not

simply retract a Valuc fiom i trigger pin but were also to pro0ide a new value, then tile test in

process-setc would be incorrect: a value would be Supported. but not the one in hand! A

better thing to do would be to restart tile rule which insoked setc: this involves a non-local

escape. This issue will be addressed in tile next chapter.)

The contradiction construct is implemented in the same way as before (able 4-4).

[he function s ignal -contradiction does not signal a Clatal error, howeser, but simply

prints a message and then calls proces s-con t rad i c t ion.-5 This function takes a list of

conflicting cells. All of the places in the system nwhich detect contradictions (merge-values,

process-setc. and cont rad ict ion) handle hemn by clling process-cont,'adict ion.

A set of "losers" (constant cells deemed to be collectikely at I'mult for the contradiction) is

computed. lhe function premi ses* computes the set ofjoint premises fbr tile list of cells. 'lien

those premises which are defau l t cells are extracted. If there are an de fault cells, then those

are considered to he the losers; otherwise all the prcinises (which miust den all be constant

cells) are taken as the losers. If dere are no losers at all (this shouldn't ever happen?), it is fatal.

If there is just one loser, it is automatically retracted. Otherwise, choose-culprit is called to

decide which one to retract.

(Suppose there are two losers, and one is a default node specified explicitly in a == re-

quest which the user just typed, causing the contradiction. Should the system in this case autornati-

cally retract the value just specified (thus making the network resistant to obious inconsistent

changes)? This would make it hard to vary parameters. Or should the system automatically retract

the other loser, allowing the one just explicitly specified to hold? Consider the two cases where the

cell to which the default was explicitly equated already had a saltue or did not. Fxercise for the

reader: determine what is "'the right thing".)

In principle, choose-culprit could be an automatic routine using various heuristics to

decide which loser to retract. This version defers the problemr to the user (not necessarily tile best

thing to do). It prints the list of losers (for each one printing also any global names conmected to it).

and then calls break to enter a I Isir breakpoint. The return function causes the specified value

to be returned from the call to break, so this is bound to the Nariable cu l pr i t . This returned
value is then tested to ensure that it is a valid culprit: if it is not, then the question is repeated.

The user need not return an actual loser cell. but may return any cell of that node. This is for

convenience, so that the user may refer to a value by an equivalent global name.

S. As with setc. there is an assuniption tia within process-contradict ion thcre will he onl rcactions, not
any newly cornpuled alues. thetchrc it is not necessary to raliy the conlradiction test.

§ 4.2 Implc',wntiin of Reiraclioti M echanisms 127

(defun retract (cell)
(ctrace "Rietracting the premise -S." cell)
(awaken-all (forget cell)))

(detun forget (cell Loptional (source () sourcep) (via () viap))
(require-cell cell)
(and sourcep (require-cell source))
(and viap (require-cell via))
(ctrace "Removing -S from -S:[-3.; because -:[of -;S---S-]."

(node-contents cell)
(cell-goodname cell)
sourcep
(and viap (not (eq via source)))
(and viap (not (eq via source)) (cell-goodname via))
(and sourcep (cell-goodname source)))

(setf (node-boundp cell) ())I
(setf (node-contents cell))
(setf (node-supplier cell))
(setr (node-rule cell) ())
(let ((fcells (append (rep-cells (cell-repository cell)) '))
(dolist (c (rep-cells (cell-repository cell)))

(and (cell-owner c)
(dolist (value (con-values (cell-owner c)))

(require-cell value)
(and (node-boundp value)

(eq value (node-supplier value))
(memq (cell-name c)

(get (node-rule value) 'trigger-names))
(setq fcells (nconc (forget value cell c) fcells))))))

fcells))

TAnit~l 4-5. Retractinig Values fromi the Network.

(derun premises (cell)
(require-cell cell)
(cond ((not (node-boundp cell)) ')

(t (let ((s (node-supplier cell)))
(if (null (cell-owner s))

(list s)
(premises. (forlist (name (get (node-rule s) 'trigger-names))

(*the name (cell-owner s)))))))))

(defun premises* (cells)
(do ((c cells (cdr c))

(p '() (unionq (premises (car c)) p)))
((null c) p)))

Conpa re this with Table 3-10 (page 84).

TAIII 1.,4-6. A Rewriting of the premises Function.

'Ilhcftllction retract i n Table4-5 Lkes carecof rcmov ig the valutc fromn a cell and awaken-
ilg thc relevant constrai tts to rcqucst recorputiltion. Thc rcctirsivc (tinction forget takes accil

128 C1 lAlY1 R [OUR RI I I\ lION

whose %aluie should be rcmnovcd and return1s at list of celis ss ose ow ners should bce awakened. (T[he
opt ional argumients source and via are used only internally to produce better ctr ace output
so that thle chain of rectirsk~e florgetting is mnorC easily fol lowed.)

Once thilc Crace out(put hiaS been produced iii forget, thc %ahic is reino' ed fromn the
rcpositor and die boundip. supplier, and tul11 comnponents reset. Thlen thle Nariable f cell Is is
used to accultlate at Set Of Cells %hose owners shouild hie awakened. This is inilially all thle cells
of the cuirren t niode. I n ad d ition. if all, cell of' (lie coirren t in de has al oi w ner, and any of thle pis
of that ow ner \kas coipu ted at title Iisi ug tha t cell ats at trigger, lien tiIhose pinls inutst also be
forgotten. and thle set of cells returned by thle recirsive call to f o rg e L. is, added to thle current
f cel I s set. Finaill) thle comiplete f cel I s list is returned. ([he ncon c function can be used
instead of' thle set-uii ion ope ratnin un io0iiq becauise \we knoiw that anii inode can ihe Ii wgotten at

mnost onice, if' sticli a nlode is eci oiici rd againi b\ ainolther p~ath, its Cells kk ill in0 it bectuiirued by
f orget . A I isi trick: thle call to append in thle in itiali/.ation of' f cell s copies the list of cells
sthat n c on c mnay be uised later and not destroy the list used by (lhe repository.)

In sulntnar\ . forget remloves thle value froin thle given node and all nodes whose salties
recursis ly depend onl it. All thie cells of all the nodes " hich lost \attics aie returned. [lie owners
of thleseccllsiimust be aw akened:l this process i~knowkn as-heggitig-. because a nodte that forgets its
value muvst beg conniected devices to re-supply (and re-support) tie value. [his is necessary because
the de\ ice iniglu, after all, have provided at value ats a subsidiary suplplier. only to has ~e thie valuie
diai dcd because it agreed with thle value prov ided by the miain supplier.

T he function preim ises *. which is simnply i part of premises wkhichi formnerly was not
at sepa rate Ftunctioin. is gi cii in T able 4-6. ThIiis illuiistra tes at coinnmon situat ion ill deal ilng with
recursive data structures: uric part of the recursion iris ols s apping over- a list of suh-stiulctures.
Writing two i mutually recursive functions allows two enitry points, one taking at Single Structure,
one taking a list of themn. A similar translkiriation For f ast -p rem i se s (which the reader will
recall does the samec thling ats premises, bitt with at better worst case, bly tisiiig graphl-niarkiflg

techniqueis) appears in [able 4-7.

('ounterintuit ilv. it is actually easier to d isi l i a node than toi d iscionne1cCt at single cell frot
at node. One iigh t t hinik t hat d issoilutioin involves lnoire \\irk. iand in deed it in ay hr it d iscoilnnect inrg
reqires miore special cases, blecauise one cell is treaited diffrcnld troili thle rest, and so requires
niore code.

Whlen at node is dissolved (see the code fir d i sS s1 v e in [aible 4-8). each cell mutst becomne
at node On to itself, anrd so each in uist ha se its owni rep isi t(i r\. To as iid son ic woirk aind lo a void
wasting at repiository. the ex istinug repo si torv is Iceft attached to tIile suipp lier (r I iirte origina lu node. If
tie no de lia s no i le, then ;in arti fic ial Suippl icr is ch oseni arhitria rily Il using t(lie Cell r-Cec sed as
anl argumnent. F'or every cell other [hllr thle SllphIier-, a rep)ository is created and hooked up to die
cell. If thle cell is a const-nit (in which case the niode lutist have it s aluce and that s alue tujust be thle

§ 4.2 lml'etincittanbo aa un*i'/ain 129

(defun fast-premises (cell)
(require-cell cell)
(progi (fast -premises-mark cell) (fast-premises-unmark cell)))

(defun fast-premises. (cells)
(progi (fast-premises-marke cell) (fast -premises-uninarks cells)))

(defun fast-premises-mark (cell)
(require-cell cell)
(and (node-boundp cell)

(let ((s (node-stupplier cell)))
(cond ((markp s) '())II

(L (miark-node s)
(if (null (cell-owner s))

(list S)
(fast -prem ises -mark*

(forlist (name (get (node-rule s) trigger-names))
(*the namne(cell-owners)))))

(defun fast-premises-niark* (cells)
(do ((c cells (cdr c))

(p I() (nconc (fast-premises-mark (car c)) p)))
((null c) p)))

(defun fast-premises-unmmark (cell)
(require-cell cell)
(let ((s (node-supplier cell)))

(cond ((markp s)
(unmark-node s)
(or (null (cell-owner s))

f ast -premisos-unniark
(fortlist (trigger-name (get (node-rule s 'trigger-names))
(*the trigger-name (cell-owner s)))))))))

(derimn fast-premises-unmark. (cells)

(dolist (cell cells) (fast-premises-unmark cell)))

Comparc this w~ith l'ablc 3-11 (page 85).

TAlll 1: 4-7. A Rce~ring of the fast-premises Function.

constanlt's value. evenl thlough the Constant is not the stippier- die assumlptionl is that thc network

is consistent). then tile neCw repository shouild hear (fie viltle. The constant cell bcomes its own

supplier, and (fic llle of thc cell (constant or de fau 1) is tLScMMa the rule namne. (This is die

situiation alluded to earlier %%here the cell lanie is tised othler tln for priting.) Itf the cell is nolt al

constanit. then it hecolles a v'alueess node, as it ha;s become di~colllected From iIts suplier (ifainy).

Once eac ll CI hs gottenl its oiwn repositor), then tile origial repository remainls with the

supplier cell al~one-, its cells comiponent is ulpdated to reflect tis falct.

linially, if thie node had had a v alue. then disconnecting somle cells has tfie effect oif retractionl

of a %,aile,. and so the r o rge t functionl Ilitst he appied. i.Ner celI which is not bouind and hlas anl

own~er is given to forget to recursively rernove values whlichl depenlded on thle connlectioln; on1ce

AI

130 CIIAPItIR FOUR RI. RACIION

(defun dissolve (cell)
(require-cell cell)
(let ((supplier (if (node-boundp cell) (node-supplier cell) cell))

(cells (node-cells cell)))

(ctrace "Dissolving -{'S-t, -)." (forlist (c cells) (cell-goodname c)))

(dolist (c cells)

(or (eq ¢ supplier)
(let ((r (make-repository)))

(tond ((and (node-boundp supplier) (constantp c))
(setr (rep-contents r) (node-contents supplier))

(setf (rep-boundp r) t)

(setr (rep-supplier r) c)
(setf (rep-rule r) (cell-name c))))

(setf (cell-repository c) r)

(push c (rep-cells r)))))
(setf (node-celIs supplier) (list supplier))

(and (node-boundp supplier)
(let ((queue '()))

(dolist (c cells)

(cond ((and (not (node-boundp c)) (cell-owner c))

(setf (node-contents c) (node-contents supplier)) ;kl:.dge

(setq queue (nconc (forget c) queue)))))
(awaken-all queue))))

'done)

-rAlItE 4-X. Dimol'ing a Node-arefully!.

this has been done, all the appropriate awakenings are performed. ('lbe line marked "kludge" puts

the old value back into tie repository solely so that forget call print its trace message correctly

before removing the value again.)

Observe that d i ssol ve works correctly in the limiting case of' a singlc-cell node. The first

loop does nothing: the setting of the node-cells changes nothing: and the second loop only executes

when the supplier has a value, but its body only works for cells with no value. Hence te node

remains effectively unchanged.

Disconnecting a cell requires some special cases ('[able 4-9). lhe disconnected cell must ac-

quire a new repository, while the old one remains with all the other cells of the node. The cell

is deleted from the cells list of the old repository, and hooked up to the new one. The contents,

boundp, supplier, and rule components are copied from the old repository to the new one. 'lliere

follow several cases.

(a) If tie node had had a value and was dte supplier for the node, then there is great upheaval.

First there is a search for other cells of tile node which might ilmlediately become a new

supplier for the node: such cells must he constants. lowever, constant cells are preferred

to def aul t cells. and so there are two identical loops, one looking for constant cells, and

the other for def aul t cells if the first one fails. In either case, the fIund cell is installed as the

new supplier. If no such new supplier can be found, then a third loop applies forget to all

§ 4.3 .Sunnn,~ary o/ilw Reiractioi Mecchanismns 131

(defun disconnect (cell)
(require-cell cell)
(let ((oldr (cell-repository cell))

(newr (make-repository)))
(setf (rep-cells oldr) (delq cell (rep-cells oldr)))
(ctrace "Disconnecting -S from -{-St, ~.

(cell-goodnane cell)
(rorlist (c (rep-cells oldr)) (cell-goodname c)))

(setf (cell-repository cell) newr)
(push cell (rep-cells newr))
(setf' (rep-contents newr) (rep-contents oldr))
(setf (rep-boundp newr) (rep-boundp oldr))
(setf (rep-supplier newr) (rep-supplier oldr))
(setr (rep-rule newr) (rep-rule oldr))
(cond ((and (rep-boundp oldr) (eq cell (rep-supplier oldr)))

(do ((c (rep-cells oldr) (cdr c)))
((null c)
(do ((cc (rep-cells oldr) (cdr cc)))

((null cc)
(do ((ccc (rep-cells oldr') (cdr ccc))

(z I() (nconc (forget (car ccc)) z)))
((null ccc) (awaken-all z))))

(cond ((and (constantp (car cc))
(eq (cell-name (car cc)) 'default))

(ctrace -S becomes the new supplier ror the node."
(cell-id (car cc)))

(setf (rep-supplier oldr) (car cc))
(return)))))

(cond ((and (constantp (car c))
(eq (cell-name (car c)) 'constant))

(ctrace -S becomes the new supplier ror the node."
(cell-id (car c)))

(setf (rep-supplier oldr) (car c))
(return)))))

((constantp cell)
(setf (rep-supplier newr) cell)
(setf (rep-rule newr) (cell-name cell)))

(t (awaken-all (forget cell)))))
'done)

TABU., 4-9. Disconn~ecting a Cell froin a Node.

of the cells of the node, and [lhen gives the collecti~e nodes to awaken-all1 in anl attempt to

recompute a value.

(b) If the cell held been a constanit htit not tile supplier for the node, then its value mu1(st hlave been

ie same as that of the node. It retains its value, but beconles its own supplier againl, and the

rule is copied from the cell namle (constant or def aul t), just as for d issol ve in Table

4-8.
(c) Otherwise the cell has beell disconnlected from its supplier, and its value multst he forgotten.

'Ilicusual forget-awaken-al I sequcnce is applied toic.

AI

132 ChAIRt F"OUR R(1 I \(vI Io\

4.3. Summary of the Retraction Mechanisms

The retraction c;ipability exhibits tile first traces if an attiifatic deduction facility. When at

contradiction is obserw d. thle svstem -tontial tra c i p rohlern to its orig in. and th en makes
it decision (sometimes autoniaticalls. ut(()[tell by asking the user) its to ho\& Li0 S1\ C the pruihiett.

Once thle decision is made, thle svstmn wi -ill rcs onc premise froi tile nletsolk and "aniti-

p ro paga te thle \aIic--ti Ut is, p lop gate tilc rem 1IV l b\ ri ii g S aIlucs si ich %vC e comipu ted
[ronm it, and then try to finmd wa\Ss to recom1pte retnomcd alites. lIM s thle ,\ steinl n1ies inll hateecr

was it ca ni to c(uip LiliCa ulies fo is mian nodes ats po ssi ble,

Ihe distinction introduced betsmeen constant and defaultL cells aillow, thle uiser to ex-

pressia leael of comifideuice in the \,ile. lot examlple. cotistant(s used "ithiti at programl that ate part

of the intenided ailgoithmiiic strittiire cani be expressed as con s tanit cells, \O ile iiptitcdata can be

expressed as de[a u it cells. T he distinlctionl is itsed to decide "shat premnises to ici ract in case of

Coti tradict ii m. ASa it m C~lLdl- my be e it, the di stinuc t ion cati aliso he iused it)ooii se ci ist icall the
'"best'' sutpp1lier hit a node. minthe genteral case ote niight s\ ant to liaw. mans11 ispes iii ciistaiit cells,
with somne partial order arnotig the types to determine v liich ones atle losers: e0 enl 111i te getierally,
a utser procedure1- could he allowed to step in anid choose amnmg thle piem ise : hbut ti' s gets er

comtfplicated.

IThe ab iIi ty to disconnect piorti ons of the corn pu tt i til netwoirk also is ai kintd if retrac tioni

Cilpabilit\ . When at cotupttation goes awvrs, the falt1 May be with the itiilt data. but(it ma1iy lso be
that thle Priigram was nuiisconstrtticted. I lowes et., we base not yet pros ded flor auitoniatic tetraIctionl
of network connecdions! Such at Facility tiight he uIseful.1 howes er-certainly the nework is sLispect

ifit acotitradiction catitot be traced to ais\' premise! If cons tan L cells are considered to he part of
the algorithniic struicture expressed b the netss ik, then perhaps suspicion oI'netss ork coiinectiotis
should he oiltia patl with suispiciort of cons tant values.

IThe de Cau I t inechati sm is not quite like that in jI)o le I 97S1 and INcA lleter 1 9781, it
gis es prellerence toi the x alue for retraction. but makes uno attenipt tio re-assert thie wale if the
Si Lt i i t cauntg the ciont taic tii n is altered. 'Ii his aibili ty is tteated inl tilie next chiapter.

But e'it Iuu tire three
4/hi 'W; /t, end

grc ~ue igeiwr.Chapter Five

oolh or vu

Oncan he tiuce be I"'t): Assum ptions
li t''helv jr !

T III 1)11AL I I' \1A Ll: \ll (I IANSM presented in Chapter Four allows one to say, "in the ab-
scnce of' any otlier iniformation, assume1 thal t acertlainl \all is thus-and-so-hut fiel free

to ignore the value if' necessary." In our- constraint language, however. " here computations can
hc undone andl ret/tie. it is uscijtil to draw at distinction between at deftift \aluc " hich, once
retracted, does nut re-alipear. and onc M itch has at certain persistence. We will call the latter kind
all astS~ipionl.

Ihlere are applications for constraints where it is vrital that i node alvtays have soiw vatile. For
examlple. if a iiode represents the x-position of some graphIical ob~ject being displayed onl at screen,
thlen if the object is to appear it mnust have soine x-position. All assumliptionl might be that the x-
pos1ition1 is ler-o unless other-Wise constrained.

Another use of assumnptions is ill case analysis. If it is knom it (or assumned!) that a node mulst

take onl one (If il specific set of valties. then one elemniit of that set call he arhitraril v asslllned to be

the \alne (If the node: aniother call always he chosen if this leads to a contradiction. Such assump-

tions lead to conclusions Mlhich are perini.Wsble. rather than requir('d If, hloAever. one goes a step

hi thie r anid arranges to assumeIl all of the a IiCS. (Ili C by oneo theni aiiy coliclusions whIichi comne out

tie s~ii1C lr all the choices 111(1st hie the caise indoepenldenlt of' the choice, leading to t(lie deduction

that such cnl u usionIls are 1-cq i red indepcndentt of thle cholice oIfs \a Infoi r (lie niode. (lere %&e shall
11ot iake tise of this extra stel). hut(ill Inake use of its c(Intraptositi\ e foi n: if ceter\ assumllptioni of
at set leads to a colltiadlctiohl. thlen the choice f10111 the set is lot itself at fault hir thie conttradiction,

but rather the sets olf oilier premses lr the respecitike contradictions, tAkel collectikely. Thiis will

lead tlo tile resoluion)1 principle.)

133

134 Ci ,\AtITi : VF ASsUNI"I IONS

5.1. Definition of Assumption Constructs

We %ill introduce two ne% constructs to dhe language: assume and oneof. Each one will

represent a cell in tie same manner that the constant and defaul t constructs do. IHowever,
assume and oneof cells Aill ha'c an associated mechanism lbr persistently giving the cell a
value.

Mo~re pre.cisel ,. (assume 11) ,sholid generate a cell which has'the value it provided that

the cell can take on that %alue con,,istently "ith the rest of the network. If ha.v~ing the value it

would L~onflict with constant or defaul t values i the network, then the value it is gracefully
withdra\mn.' + rit %ould .mLOiACt with other assumptions. then One assun111)l) is choltsen+ arbitrarily

and w ithdrawn.

Similorly. (oneof list) takes a I.ISP list of values and generates a cell which takes on one of

the alues in lisi. If taking on one value leads to a contradiction, it is withdrawn as for as sume and

a new value is tried. For example, (oneof ' (0 1 2)) generates a cell that tries to take on one

of the values 0, 1, or 2. It might appear that

x (oneof '(0 3 5 6 9)))

is exactly the same as (and therefore simply shorthand for)

(= x (assume 0))
x (assume 3))

(== x (assume 5))
x (assume 6))

(= x (assume 9))

but this is not so. The latter says that x tries to take on one of the values 0, 3, 5, 6. or 9, other

things being equal. If, however, some external constraint on x requires x to be 4, then all these

assumptions quietly bow out. On the other hand, oneof imposes the constraint that x imust take

on some one of these values. If some external constraint onl x requires x to be 4 when the oneof

construct has been used as above, then a contradiction occurs.

1. It is thus arbitrarily assumcd that assumptions arc Ics important than defaults or conslans Oic sit h want io
have something like a default which was less important than an assumplion. Indeed. the quesin of pcrsitcncc for
a cell and the question of which is chosen for retraction in case of conflict arc orthogonal.

p

1

§ 5.2.1 Implcmentation Problems 135

FAHRENHEIT CENTIGRADE

32

ADD BB OTHERMULT MULT

FIGURI
/ 5-1. A Temperature Con~cr-sion Nc~t%,oIk with an A.sumlption.

FAHRENHEIT CENTIGRADE

CA C C0 ,. '

ADD OTHERMULT ML

FIGURE 5-2. A Temperature Conversion Network. after Rcuracting aln Assumption.

5.2. Implementation Problems

There are some difficulties with implementing these constructs. The primary problem is that

they cannot operate using purely local information. i'his will be solved by recording extra informa-

tion about die structure of the network so that assumption cells will have die irformation they need
immediately to hand.

5.2.1. Nogood Sets Can Ile Used to Locally Record Contradictions

Consider first the assume mechanism. Suppose, in a temperature conversion network, that

centigrade is assumed to be zero:

, .',-

136 CIIAIFR FIVE~ ASSI %III IONS

(~centigrade (assume 0))

'(his causes thc comiptation (onl the basis of thlis assumption) oif the xa I ti 32 for f a If re nhei t
(Sce Figure 5-1: tile assumlptionl is indicatcd by at hexagonal shape). Suppose then that
fahrenheit is equaitcd to thc del'-imll aic -40. I'bisof courise catiscsi iimediaite detection oI a
con trad iction. Ti[be con trad ic tion inech I ni, trac ing the p remnises of the contI.rad ictoi v \alutes, fi nds
that thle premnises are three constant cells. a defaul t cell. and *in assume cell. Thei last is
chosen ats thie culprit and retracted. At this instanit. just after thc retraction of thie assumlption and
.thle forgettinig of tile consequiences, thle situation is ats shuvb ii in Figure 5-2. Once \aloes haive been
torgotten, then e\erv thc owner (ifan) ofeve'y refracted cell is as\iikcncd. to request it to coinpute
at value if it can.

I (crc. then, is thle pliblein. I f the assumiption cell is awakened in the of\ lols" \A ay, it will
gladly su pply af \altie for its cell. (it can no t tell al this pOin utid t this value is con tiadic toiry. All it
call tell locally is tha t its celli has fit) oal tie, and it li as been asked ito su ppl af alne.) Fri'ont this % al tie
new deductions, May p~roceed. Indeed, before you know it the %iiloe 32 mnight be iecdeduced for
f ah renh e i t! 'Tbis would trigger af new contradiction, and the result is that thle systemn might oscil-
late. tbrever thrashing. [:enl if dleductions front Uahrie nhe i t miade any headway (say through
the first mnultiplication device), deductions froii tile assumnption Might Continue to beat against
themn at intermnediate points.

One approach ito solving this lprolblein wouild be it) assigni priorities to proipagationi possibilities:
Values not depending Oil aSsum1ptiolis should be propagated in preference to va.Ilues not depending
Onl aSSUmIptiOnS. Of course, this in effect imnplies carrying around informnation with each value
describing its origin. 'Ibis aniiulnts to carrying around extra non-local iiiforniation about distant
parts of the network. Moreover. so far it has not been necessary to place ally restric'tions onl the
oirdcr in %hich pro'pagaltion step are carried out by the systemn; indeed. we wish to pmreser've as Much
ats possible thle proper-ty tiat propiagations mnay be pertormied inl parallel.

If we are commiitted to recoirding sonic kind of non-local iiiformiation, we might ats well do it
right. in a straightlfOrwai'd way. We will introduce the niechianisin of nogood scH IStalliman 19771. A
niogoodl set records af set of premuises which hiave been f'ound to bie inconsistent. Whein af contradlic-
tiol occurs t least One Of Wh1oSe I)IClI5iCS is anl ISSumnption, then a list (ifthe premnises is made uip.
'Ihis list is iccorded in cach preinise's node. When anl alssumption cell coiisidei's tr'ying to assert an
assumned valule for its node, it call first check all] of the nogood sets assi ciated w ith thit node. If thle
assuiiicd value would evenitulally cause the reoccurrence of af contiadiction w\hich has already been
noted once and recoided in the formn Of aiogoiid set, then the assliniption cell canl avoid asserting
(he value.

Nogood sets record valu te iiifoi ation aboiu t the nietwo rk, in foriai u ga inied at somec coin-
putational cost, Concernimng sets of' inicompatible ' aluaes. 'I 'ley serve ats a caiche, so that blind alleys
need no~t be rec-explored over aiid over again. Instead. assiumlptionl cells canl perhap,1s determIine

L6I

§ 5.2.2 Implementalion Problems 137

locally and iinmediatelN that its value w ill eentually cause a contradiction in the current situation.

Nogood sets therefore proN idc a semi-predicate flor the safety of the assuincd %alue: tie absence of
a relevant nogood set does not guarantee that trying a '.aluC will succeed, but the presence of one
can immediately guarantCC that it must fiil.

I'he fornmation of nogood sets of course constitutes a kind of algehra on the network. F.ach

sct sunmmarizes some computation tree in terms of a set of values for its leaves known to be incom-

patible. Indeed, we might W',ant to think of a nogood set as another kind of constraint: a redundant
constraint that a certain set of nodes may not all siiultancousl take on certain associated %alues,
alid that assutmption cells know about speciall. or efficiency (?), however, we will not actually
implenment them as constraint devices. (Another reason is that the language does not have sets as

data objects.)

5.2.2. Resolution Can Ierhe Neil Nogood Sets fron Old Ones

We turn now to the oneof construct. Suppose that the node to which a oneof cell is

connected has no value, and the oneof cell is asked to supply a value. It can examine its set of
possibilities, possibly filter out some of them by consulting die nogood sets recorded in the node,
and then arbitrarily choose one of the remainder to assume.

Further Suppose. however, that the recorded nogood sets rule out all of tile possible choices;

that is, for each choice there is a nogood set which rules out that choice. What then can be done?
Iet us refer to the nogood set that rules out a choice as a "killer" of that choice. Now a nogood
set is a mapping of nodes to particular values, and asserts that not all the nodes may take on the

associated values, because that has been previously determined to be a contradictory state. For
a nogood set to be a killer for a choice for a node, it must be the case that every other node in
the killer must currently bear its associated value. By an abuse of terminology let us call all these
other nodes the premises of the killer (they are die grounds fbr assuming that the choice cannot
hold). Since the oneof construction indicates that it is a contradiction not to be able to choose
any of the values, then all the premises of all the killers must be collectively responsible for this
contradiction. It follows that these collective premises themselves constitute a nogood set, which

call be duly recorded. The result is that from several nogood sets sharing a common node, each
forbidding one value for that node, a new nogood set can be derived not containing that node.

As an example, consider the network of Figure 5-3. The node named confusion has
attached to it three little sub-networks and a oneof choice. One network states that whatever

confusion is,

confusion-+ confusion = confusion X confusion

must hold. This is a quadratic equation with roots 0 and 2: however, this subnetwork cannot

compute a value for confusion by local propagation. The second subnetwork states that

. - . - -'

138 CIlAPTn-R Fivi" ASsUMPTIONS

CONFUSIONLOS+

X O2) J 6 : -

Ficm. 5-3. A oneof Ccll for ,hidh No Altcrnative Works.

CONFSION Contradiction!

+MA
0 0

00

x __

FIoURr 5-4. Assuming Zero Dos Not Work.

confusion is the maximum of I and something elsc. The third says that confusion cannot be

2. Neither of these can compute a value for confus ion by local propagation, either.

The oneof cell (indicated by a hexagonal shape with a set inside it) will assume some value

of its set. Suppose that it assumes 0 is the value. Then a contradiction will occur in the inaxer
device, for 0 cannot he the maximum of I and anything else (Figure 5-4). '11le set of premises
causing this contradiction is the assumption 0 and the constant 1. Thus a nogood set is created:

{(assumption-cell, 0), (con stant-l, 1)}

(Here we notate a nogood set as a mathematical set of ordered pairs (cell, value).) The assumed

value 0 is retracted, and all consequent deductions forgotten. This leaves us back where we started,
except for the newly created nogood set.

S - - •- ., = ° '" = -- • " ° .. , . =

§ 5.2.2 Inipleme,,iafion Problems 139

2 CONFUSION

2 0

Contradiction!

FIGURI 5-5. Assiimii. One 1Does Not Work.

42

eqato (Figur 2-) Th C fpcss Cauigtiontradiction i h supinI(h

X{asmpin-el I)})

In ohcr ords I smplycn~ nc-cr work ing T cu N Nt Work.nicosasordfutae

T[he oneo f cll, true torisntrwudsillk to assume some value. Clo xstn oooesnowulotnbothe
avaable anod sets2 is dn.Iis css ati cornrin. uos theaqulty it ichigues 5-. Ite
alsonthapetinswl ocmu thewhalue ifo the vaiale qooseaich angs oo Ioth isnaxro o ie

devuie. 'igr-)The set of premises causing this contradiction is the assumption I (the cntn .ai h

140 CHIAPTER FIVE~ AssL \Ii,ioN

CONFUSION2

2

4
2 L2

2

FiGL.RE. -7. Causinrg a CurmIradkic ti ri ad Re trac[ltio F- limah~ Woriks.

dcl'ault VaILue 0. 'lThs another nogood set is created:

{GitSSumRption-cell, 2), (constant-2, 2), (del'ault-0, 0))

TIhe assumced value 2 is retracted, and all con1SeqUerit deductions forgotten.Tlhis leaves uts yct again

back where we started, cxccpt for yet another nogood set.

Once again thc oneof cell tries to assumne at valuc. Now it discomcrs that esry Possibility
is ruled out. 'Ilhe constant Iprcvcnts die choice of 0, thc choice of I is flatly forbidden: anid tie

corisuint 2 and thc defiult 0 rule out thc choice of 2. Since one of the three choices miust hold.
this constitutes a contradiction.Tlhc three nogood Sets are rncrgcd, eliminating the assuniptionl-cell
entries, to forin a fourth nogood set:

((constant-I, 1), (constant-2, 2), (dcf'ault-0, 0))

Thiis conlstitutes a resolution step oin the noigood sets. Now the contradiction mnechanismn of Chapter
Four goes to work, and finding that there is exactly one de faulIt cell involved, autlomlatically
retracts that vaIlue.

Onie last time thle oneof cell Conltemiplates its situation. T[here are three nogooid sets to con-

sider. [h le value 0 is still ruled ouit, because the cons tan t cell I Still haS its al(Ie. [he vaile t

is still ruled ouit. 'I lie value 2. however, is nof tiow ruled 01.t, cuLsC oneC Cell of that niogood set

(thle dle f aul1t cell) now has rio valueW. I lence the oneo f cell is again free to chioose 2 for- its value.

This eventually propagartes throughout thle network. arid computes thle salte 1 for the do f aul t,

cell which wvas formerly 0 (Figure 5-7).

who" I

§ 5.3 Imphnucniaion 0] iIsuiSUh)ionf MechiIXJs 141

5.3. Implementation of Assumption Mechanisms

To imiplemnent thle assumption inechanismis %ke need at wa) to represent thle "peisitece"C ofan

assunmed UaL ie. and alsit ci ata struccttnrc Ii Ir repi esc tin no5ligoo1 d sei s. 'e " ill treat ai Iiin Imp(ii

ats at funny kind of' constraint, one which (SOIntin]ICS) com1Ptets a %,title v. itliou.t reCquiring ally

inputs. TI he constraint nteeds to knoti. %%hat %alti 01fr ass uine) or- alcies (fin' on eo r) to choose

front. Tlo this cud af new comnponcnt in/bi is added to C' Cl') coiis~tit. N4oi c er. colstiainit %%ill lisc

it (indeed most %kill not): it is at catch-all component for sticking cxtia things into. Tis component
will find yct other uises in later chapters.

A nog~ood set " ill hC rep rese nted ats a headcer plo s af ;f nted list oflpa irs, eicli pa ir he ing af cons

Ofi a eposi tor)N (Used to tin iq ue I i epresent aI niode) n11d a %alueI (alliteg r). I Kch iCp(si t(r) A il]

hear an identification (an i11 coniia n it i iri to that fotr cells an d coil,,ti'a I tits), anmd thle pairis of a

lit 5111d set arie so rted by al ph abetical orideini g oin this rept sitoiri i ini ica tion. (I lie only reason

for the id comntpo n ent tin each reptosi tory is fr Wso rting ptiimses, mnd the 0111) reasonl liii sorlilg is so

that certain linear algtwri ils canl he used onl nogtlod sets.) [lie header A ill be siili file synmhol

nogood. '[his is PIVSCent puie-ly Soi that if nogood set can he altered b) side-effect: if every place
that knoicws abhount the nogood set Poinits oiilIy to the header. theni alIteriatioiis of thle itt gootd set \hill

Ibe %isib Ic to all.Th 'ius af nogol d set miiigh t look like th is:

(NOGOOD ((REP-12> . 5) (<REP-IS> . -3) ((REP-23) . 6)) -

Thiis is af nogood set \k ith three pairs.

[very repository mentioned inii a icgciod set needs to kniow about(tfhat nogood set. I lence

anther uie\ coimponIeiit, 1,tgtotds. is added to each repository. Th Iiis could he simlply at list of all

nilgilod sets menitionming that reptisitory, but to spleed LIP sacil'hingo it will he di~ ided inito "buckets"

actord ing toi the %alIiie asscciat ed With that reptsi ttl il til te lit 5 itd. Al hus. for af Si eii reposi tory,a II

the ncigoods associating v'aluie 0 with that reptository w ill he in btucket 0: for the %altie 1, bucket 1;

for the valuec -43, the bucket -43, etc. 'h'itus, to check whether af certain v'altue n is aSSiiiablc

fiur aI repository, only nogood sets ill bucket n nieed lie checked. For fastest access to a bucket, the

buckets ciuld he kept in at hlash array. We will not he that coiiiplicated here: instead, the ncgoods

comnplent will simply he ani a-list, associating buckets with %alues. I lowevr, the a-list pairs will

be kept sorted by values, again for speed, i aill, a teposittiry's nogoods comliponeint miight looik like

thiis:

((-3 (NOGOOD ((REP'-12) 5) (<REP-IS> .- 3) (<REP-23> . 6))
(NOGOOD ((REP-IS) .- 3) ((REP-43) -20)))

(0 (NOGOOD ((REP-il) -4) (<REP-IS) 0)))
(7 (NOGOOD ((REP-14) .2) ((REP-IS) .7) ((REP-23> .- 7) ((REP-43) .27))

(NOGOOI) ((REP-t5> 7) (<REP-24> 0) ((REP-43) 0))
(NOGOOD ((REP-6) 3) (<REP-14> .- 7) (<REP-iS) 7) (<REP-43> .27)))

(9 (NOGOOD ((REP-15> .9))))

142 CH APTElR FiVL AssumPlIONS

J(deftype constraint (con-id con-name con-ctype con-values con-info)
(format stream "C@[-jS:JS)' (con-name constraint) (con-id constraint)))

(deftype repository ((rep-contents ()(rep-boundp ()) (rep-cells)
(rep-supplier ()(rep-rule ()) (rep-mark)
rep-id (rep-nogoods '()))

(formiat stream "<Repositor-:[*;: -S-']-@[for{S,]')
(rep-boundp repository)
(rep-contents repository)
(cell-ids repository)))

(derinacro node-contents (cell) -(rep-contents (cell-repository ,cell)))

(defmace'o node-bouidp (cell) -(rep-boundp (cell-repository ,cell)))

(definacro node-cells (cell) .(rep-cells (cell-repository ,cell)))

(definacro node-supplier (cell) (rep-supplier (cell-repository ,cell)))

(del'macro inode-rule (cell) -(rep-rule (cell-repository ,cell)))

(defmacro node-mark (cell) -(rep-mark (cell-repository ,cell)))

I(derlnacro node-nogoods (cell) .(rep-nogoods (cell-repository ,cell)))

(defun gen-repository (
(let ((r (make-repository))

(n (gen-name 'rep)))
(setf (rep-id r) n)
(set n r)
r))

(derun node-lessp (x y)
(require-cell x)
(require-cell y)
(alphalessp (rep-id (cell-repository x)) (rep-id (cell-repository y))))

Cornpare ihis with Table 3-I (page 75) and Table 2-3 (page 49).

TABLE'5-I. Dama Structure M(dificatIOnIs for Assuoiiptions.

'his nogoods componcnt has four buckets, which are sorted according to thc values -3, 0, 7,

and 9. Tlhese buckets have 2, 1, 3, and I nogood sets, respectively. This is e~idently the ilogoods

com~ponlent of repository ntlrnbecr 15. '[le buckets arc not sorted (they cotild be sorted by a lexi-

cographic order, hut this did not sccmn to bc worthwhile for' thc present puirposes). F~ich entry of

eachl bucket (i.e.. each nogood set) is sorted by repository id.

Tlable 5- 1 shows thc ncecssary changcs to the con s tra in t and repo s ito ry data struc-

tures. As usual, a maicro node-nogoods is defined to access the Ilogoods given a repre-

senltative cell of a node. [he function gen- repository generates a repository aild assoc2iates

a uiniqu~e I.ISP variable nanie with it, also in the usual manner. Iveryplace that used to

call make-repository (these places are in gen-cell1, disconnect, and dissolve) are

changedto call gen-repos itory. ([he new definition of gen-cel 1 is not shown here, as that

is the only chlange to that fuinction.) [he predicate node -less p orders two nodcs according to

die alphabetical order of tile id's of thei r respect i %e leposi torles.

§5.3 liiploncntaion q Assuinplioni Mec han isms 143

(defprim assumption (pin))

(progn 'compile
(defun assuoption-rLule (*me*)

(let ((*rule* 'assuimption-rule)
(pin-cell (the pin *me*)))

(or (node-boundp pin-cell)
(let ((value (con-info .me.)))

(do-named outer-loop
((x (cdr (assoc value (node-nogoods pin-coil))) (cdr x)))
((null x) (setc pin value))

(do-named inner-loop
((c (cddr x) (cdr c)))
((null c) (return-from outer-loop))

(and (not (eq (caar c) (cell-repository pin-cell)))
(or (not (rep-boundp (caar c)))

(not (equal (rep-contents (caar c)) (cdar c))))
return-from inner- loop)))))))

(push 'assumiption-rule (ctype-rules assumpt ion))
(defprop assumption-rule () trigger-names)
(derprop assumption-rule (pin) output-names)
(defprop assumption-rule assumption tentative)
'(assumption rule))

(defun assume (value)
(lot ((a (gen-constraint assumption))

(seif (con-name a) (con-id a))
(setf (con-info a) value)
(awaken a)
(the pin a)))

TAHIT 5 -_. limiplenicnuilion of llw as sume Construct-

TIhe implemntation of the assume conlStrulct is Shown ill 'ablc 5-2. A special kind of primi-

tivc constraint called all as sumipt i on is first defined. It has a sinlgle piln called p in. anld no ruics

of die usual kind. T'he funccion ass ump t i on - i-u 1 e implemnts a special rule for assumlptions,
which unlike other rules has no triggers. the ftunction's argulllent is called *me*, and die first thing

it does is to bind the variablcs * i-u I e * and p in - cell1 this is in accordance with con ventionl so

that thc setc conlstrtuct can be used withinl the rtile (se 'able 4-3 (page 124)).

If thc pin is nlot hound, then the assumlption rulc considers asseltilig anl assumned value. The

relevant value is stored in the info conipollelit of the constraint (which is passed in as *me*). 'he

assumption rule perfonrms a set of two nested loops. [he tilter loop felches the bucket associated

with the Nalue fromr the node's Ilogoods component, thlen iterates o~er the contents of the bucket

(each clement is a nogood set). If eacth nogood set passes a test (thlat it not currenitly forbid the

value), then the pinl is set to the Value. using SetC.

ilihe inner loop imiplemnlts tile nogood test. All the repositories in thie nogood set are checked.

If any repository other than the one for the pill-cell is either unibounld or had a different value from

the one associated with it ill the nogood set, then that niood set does not forbid the valtue, hence

PIP-- -- low

144 CIIAPIFR FI;VlF ASSI \1I' I IONS

(defprim oneof (pin))

(progn 'compile
(push 'oneof-rule (ctype-rules oneof))
(defprop oneof-rule () trigger-natnes)
(defprop oneof-rule (pin) output-names)
(defprcp oneof-rule oneof tentative)
'(oneof rule))

(defun oneof (valuelist)

(let ((a (gen-constraint oneot" ()
(setr (con-name a) (con-id a))
(seLf (con-info a) valuelist)
(awaken a)
(the pin a)))

I mi ' 5-3. Inpleentction of th 0o neof (C'onstrict..

the inner loop may be exited, and the next nogood set tested. If the inner loop checks all the pairs

of a nogood set without exiting, ho\\eser, then the nogood set must foirbid the value, and so dte

outer loop ik exited. In other \Aords, ifp is the repository for the pin of the assumoption, and b is the

bucket oIt iiogoods for the value. thcn die value is forbidden if

3n G b (V(r, v) C n (r 3- p A rep-boundp(r) A rep-contentsr) v))

The function assume generates an assumption constraint. It liakes the name1 of the con-

straint hc the same as its id, installs the assumed value in the info field, and then-ver inipor-

tant!-aakens tie constraint. (Since tile rule has no triggers, it is always triggerable. If the

asstuTiption is not awakened no". it probably never will be, so it better be done now.) This "ill

cause the assuned valuc to be asserted in the pin. Finally, the pin is returned.
[he push construct adds the rule to the set Of rules for contiaint-type assumpt ion. lhe,

first two defprop forms define the set of triggers (empty) and outputs (the pin). The third

de f prop fIomi defines the rule to he I laliv': that is, a \alue conputed using that rule is very

'weak". ard subject to automatic retraction., Also. nogood sets should alhays be recorded for

tentative alies. This property Aill le used in process -contradict ion.

The inplementalion of oveof (Table 5-3) is similar to that for assume. There is I kind of

constraint called a oneof. and the info colllpollent of the Constraint holds the list of possibilities.

Ihere is a function oneo r %hich is analogous to the function as sume-indeed, they are almost

identical.

2 ('ompare mhi, with Ilrowns "weak rules". Illrown 19801

4b

§ 5.3 I1,l'h'1lIn ; ,, ~I d l I ,lNjllfl 1c('(i l.sis 145

(defun oneof-rule (me*)

(let ((*rule* 'onoor-rule)
(pin-cell (the pin *me.)))

(let ((values (con-info .me.)))

(cond ((node-boundp pin-cell)
(or (member (node-contents pin-cell) values)

(contradict ion pin)))
(t (do-named loopover possibil Iti.tos

((v values (cdr v))

(killers ()
((null v)
(ctrace "All of the values -S for -S aie no good

values

(cell goodnanie pin-cell))
let ((Icrs '{ I))

(do st i k I Ilr k i lers)
d , Iist (x (ld k illor))

(of, q (e ar-) (eIlI repository pin cell))I et I (if (ep boindp (car x))
(rep-supplier (car x))

(car (rep-colls

(car x)))))) ??
(or (memq tell losers)

(push cell losers))))))

(process-contradict ion losers))

(oneof-rule *me.))
(do-named outer-loop

((x (cdr (assoc (car v) (node-nogoods pin-cell)))

(cdr x)))
((null x)
(setc pin (car v))
(return-from loop-over-possibi Iities))

(do-named inner-loop
((c (cdar x) (cdr c)))
((nul1(C)

(push (car x) killers)
(return-from outer-loop))

(and (not (eq (caar c) (cell-repository pin-cell)))

(or (not (rep-boundp (caar c)))
(not (equal (rep-contents (caar c)) (cdar c))))

(return-from inner-loop))))))))))

TABiLE 5-4. The Rule for oneof.

'IV difference between assume and oneof is Cxpressed in the function oneof-rule

(Table 5-4). If the pill has a \alic. Ithen it Inust be ill the permittcd set of %t Itics, or else it contradic-

tion is signlalled. If the pin has no value, then a inore collplic tled search is performed. There is a

third loop nested outside the tther two, 'Oich loops (l\er the possible choices. For each choice tie
same test tused by assunip Lion - rule is performned, trying to find t iogood set that will forbid

the alic. If none is found. then tile v;alC is installed ill tile pill. nd the loop over the possibilities

is cxitcd, as a valid choice has been fj~tlnd. If, howcver, fr ,i gi~ei l)tOsihility it nogood set is found

which docs forbid (hill choice, then there is no(hope for that vahic. The ilogood sct is a killer for the

value, and is renmrnbered by pushing it onto the list k i 11 ers.

I.. -C . I

146 CIl,\l rj~i Fivi- AssuMvi IONS

(defun process-contradiction (celis)
(let ((premises (premises* cells)))

(do ((x premises (cdr x)))

((null x)
(let ((losers (do ((p premises (cdr p))

(z '() (if (eq (node-rule (car p)) 'default)

(coils (car p) z)
1)))

((null p) (or z premises)))))
(cond ((null losers) (lose "Hard-core contradiction!"))

((null (cdr losers))
(retract (car losers)))

(t (retract (choose-culprit losers))))))

(cond ((get (node-rule (car x)) 'tentative)

(ctrace "Deeming -S in -S (comlputed by rule -S) to be the culprit."
(node-contents (car x))
(cell-id (car x))

(node-rule (car x)))
(forin-nogood-set premises)

(retract (car x))

(return))))))

Compare this %%th fable 4-4 (page 125).

TABiLi 5-5. Looking for Tentative Valtics for Use as CulpriLs.

If any ,alid choice is fotnd, tien it is installed as described above. If no valid choice is fiund.
then a killer nogood set has been found foir each choice. In this case oneof - ru l e anlnounces (via

c trace) that all tile possibilities have been ruled out. It then takes the union ofall the repositories
in all the killers, other than the repository for the pill itself, accunitilating then in the list l ose rs

(actially. for each repository a representative cell is found: if the repository has a value, then its
supplier is used, and otherwise onc is chosen arbitrarily 3).

The list 1 ose rs is eventually a set of cells in contradiction produced by resolution of the set

of killers. These cells are given to process-con t rad i ct i on. When contradiction processing
has ended, oneof-rul e re-invokes itself to try choosing again.

When a contradiction occurs, the central handler proces s-con t rad i c t ion is called. This

function is changed (Table 5-5) to have three priority levels for culprits: just as de fau 1 t values
are preferred to constant values, so values computed by a tentative rule are preferred to either.

hlius there is an extra search l,,p, which first checks all the premises for a tentative valte. Ifany is

found, it is immediately deetned to be the culprit, and a nogood set is constructed and recorded for

this contradiction. The culprit is then retracted in the usual manner.

I The latter case should of course never occur, but coding it this way allows for general non-monotonic rules later
which are triggered by Ihe lack of a value in the .anic way that assumption-rule and oneof-rule are. In this
case the "unbound valuc" might usefully appear in a nogood set.

§ 5.3 linplecntuion (of Assump~lioni ,lechanisins 147

(def'un raorm-nogood-set (cells)
(setq cells (sort (append cells '()Nnode-lessp))
(ctrace "The set-:(-<%; I8X-:15; -S-S)>: t,-/]-%;l18X-: 5; is no good.->"

(forlist (c cells) (list (cell-goodname c) (node-contents c))))
(let ((nogood (cons 'nogood

(rorlist (c cells)
(cons (cell-repository c) (node-contents c))))))

(dolist (cell cells)
(let ((slot (assoc (node-contents cell) (node-nogoods cell))))

(cond (slot (or (member nogood (cdr slot)) (push nogood (cdr slot))))
((or (null (node-nogoods cell))

(< (node-contents cell) (caar (node-nogoods cell))))
(push (list (node-contents cell) nogood) (node-nogoods cell)))
(t (do ((ng (node-nogoods cell) (cdr ng)))

((or (nutll (cdr ng))
(< (node-con tents cell) (caar (cdr ng)))

(setf (cdr ng)
(cons (list (node-contents cell) nogood)

(cdr ng)))))))))))

rABH: 5-6. Constructing and Recording a Nogood Set.

It is essenltial that a nogood set bc rccordcd if it tentative rule is illvolved, because dile rule will
depend on the existence of that set not to keep mlaking the samec poor choice over and over. It is
not necessary to record it nogood set if only conlstant and det~ault values are inlllCd. It mlighit bc
Useful. tOfCOtrsc: the ordinary propagation mlechlanismn Cold chleck nogood sets in order to detect
contradictions earlier. 'I his nmight be particularly uiseftul if the User is trying onc defiilt value after
another Ahile twiddling some parameter: tile = = mechallism (in me rge-val1ue s. perhlaps) could

check nogood sets before attaching a new valueC in order to detect a bad Valluc quickly. Thlere is a
trade-off between the space and time needed to record at nogood set and (Ile time nleeded to check
them,. anld the overhead of repeatedly rediscovering tile 5shllc conltradictory situation if premlises are

being varied rapidly. However, it is unclear whether this is worth it; it is at good subject for future
statistical research.

The f'unction form- nogood- se t ('['able 5-6) takes a list of nodes (i.e.. representative cells),

and constructs and records a nogood set for their current values. First tie nodes are sortedl accord-

ing to the node-lIessp predicate, to ensure that die nogood set will be properly sorted. (Thec call

to append is intended to copy the list ofinodes, becatuse the so rt primiitive is destructive.) After

a trace message is prinlted, the Ilogood at-list is constructed. Thlen for every nlode, the new Ilogood

set is installed in that node. Thlis involves using assoc to get die relevant buicket. If tie nlecessary

bucket exists, the nogood set is added to tie b~ucket. Otherwise a new bucket mlust be created anld

inserted ill the correct place to keep thle list of buckets properly sorted. 'l'his involves some tedious

special cases.

''le tr-ouble with adding ali interesting new feature is always that it interacts with everything

else. Nogood sets are no(exception. What should happen to the nogood sets whlen two nlodes arc

148 CHlAl' R lIVE ASSt iI ii oNs

(derun ==(celll cell2)
(require-cell celli)
(require-cell cell2)
(or (eq (cell-repository celil) (cell-repository cell2))

(let ((npwval (merge-values celli cell2)))
(let ((ri (cell-repository celil))

(r2 (cell-repository cell2))
(cbl (node-boundp celll))
(cbZ (node-boundp cell2)))

(let ((r (cond ((eq (rep-rule rl) 'constant) ri)
((eql (rep-rule r2) 'constant) r2)

((or (not cb2) (and cbl (ancestor celli cell2))) ri)
(t r2)))

(rcells (append (rep-cells ri) (rep-cells r2))))
(setf (rep-contents r) newval)
(let ((newcomers (ir cbl (if c02 1() (rep-cells r2))

(if cb2 (tep-cells ri)))
(xr (if (eq r ri) r2 ri)))

(setf (rep-cells r) rcells)
(dolist (cell (rep-cells xr)) (setf (cell-repository cell) r))
(let ((fcells (alter-nogoods-rep xr r)))
(setf (rep-nogoods r)

(merge-nogood-sets (rep-nogoods r) (rep-nogoods xr)))
(awaken-all fcells))

(awaken-all newcomers)
'done))))))

Con-.lrc this with Table 4-2 (page 123).

TABUl 5-7. 'Icrjin- Nogui d Sets When Ftjtiating (Cells.

equatcd? Accordinlg to otir p~rintcile of order- iitldependence, CCerythilig Otlght bc hc jtust as if the

equating had happened first, Followed by creation of tile Ilogood sets. Thlis is Ilot simlple.
. ihc necessary chlanges to = = are shownl ill Table 5-7. A %ariable xr has been inltroduced

1o stanld for the repository whlichl will be thrfownl away', thtls r anld x r are r 1 and r2 or vice

versa. Now if a value was 110 good for x r before. thlen it will certainlly be 110 good for r, because
they are to be the same. I lenlce all the nogoods for x r nmust be carried over to r. Tlhe funcetion
a] tei- nogoods -rep caulses all the Ilogoods in x r to he modified to apply to r. Thlen(lie two
collections of nogoods mu~st be mugrged: in the process any duplicates are elinminated for searchling

efficiency later. (After all, there may have been two Ilogotod sets that were idecntical except that one
mentioned r a 11(one mnti oned x r.)

TheC function a] te r-nogoods - rep retulrns at list ofCcllS Whose owners should he awakened
after everything else Ilas been done. These cells al-e awakened by == after tlie nogood collections

have been merged.

T[he funlction al te r-nogoods-- rep (Tlable 5-8) mtlst handle lots of special cases. It iterates

over the nogoods complIonenlt of' x r. For each bucket it iterates o~ er thle Ilogood sets i", that bucket.

For each nogood set it uses as sq to find the pair mfenltionling x r (whichl mulst be preselt-if it is

§ 5.3 Implmefmilion oJ/..YIIl/Iim .1 IC4 an isnl" 149

(defun alter-nogoods-rep (xr r)
(lot {(rcells ,()))

(dolist (bucket (rep-nogoods xr))
(dolist (nogood (cdr bucket))

(let ((z (assq r (Cdr nogood)))
(xi (assq xr (cdr noyood))))

(cond ((null xz)
(lose "Funny nogood set -S for bucket -S of repository -S."

xr (car bucket) nogood))
((null z)
(setf (cdr nogood)

(add-nogood-pair r (cdr xz) (delassq xr (cdr nogood)))))
((equal (cdr z) (cdr xz))
(setr (cdr nogood) (delassq xr (cdr nogood))))

(t (dolist (pair (cdr nogood))
(seLtq cells (append (rep-cells (car pair)) fcolls))
(let ((buck (assoc (cdr pair) (rep-nogoods (car pair)))))

(or buck (ose "No)existent bucket: -S." pair))
(setf (cdr buck) (dlq nogood (cdr buck)))
(or (cdr buck)

(setf (rep-nogoods (car pair))
(delrassq '() (rep-nogoods (car pair))))))))))))

fcells))

(dertun add-nogood-pair (rep val nogoodlist)
(require-repository rep)
(cond ((null nogoodlist) (list (cons rep val)))

((node-lessp (car (rep-cells rep)) (car (rep-cells (caar nogoodlist))))
(cons (cons rep val) nogoodlist))

(t (cons (car nogoodlist) (add-nogood-pair rep val (cdr nogoodlist))))))

"FAl1 5-8. Alterinig Nogood Sets for a No Repository.

not, an internal error has been detected), and possibly a pair mentioning r. If a pair mentioning r

is not found, then the pair mentioning x r is deleted from the nogood set. and at pair mentioning r

with the same value is added (it tst be added in the correct place to kccp the nogood set sorted).

Now if there is a pair nentioning r, then there are two cases, depending on whether or not the

mentions of r and x r associate the same value with each. If the values are the same, tien the

mention of x r shothid be deleted: die nogood relationship still holds, because once r and xr are

merged, then r holding the valuc is the same as xr holding the value. If te values are different,

then the nogood relatioltship can never hold (one of the two cases cannot hold), and so the entire

nogood set might as well be eliminated: die nogood set must be deleted from every bucket which

contains it. Ivery such bucket can of'course be Ilbund from the repository-vale pairs of the nogood

set. As an extra hut unnecessary space-saving twist, if deleting a nlogo()d set from a bucket makes

the bucket empty, then the bucket is reno' ed fron the list of buckets for that Ibcket's repository.

If a nogood set is eliminated, then all owners of cells in all the nodes whose repositories are

mentioned in the nogood set ililst be awakened. This is because tile nogood set might be the reason

that some assume cell is not currently asserting its assumed value. Such assume cells must be

ISO CIIAP I R IVE Assummi IONS

(defun inerge-nogood-sets (SI s2)
(cond ((null si) S2)

((null s2) si)
((< (caar SI) (caar s2))
(cons (car si) (inerge-nogood-sets; (cdr SI) s2)))

((> (caar si) (caar s2))
(cons (car s2) (nerge-nogood-sets si (cdr s2))))
(t (cons (conls (caar si) (merge-nogood-buckets (cdar sI) (cdar s2)))

(inerge-nogood- sets (cdr s I) (cdr s2)))

(del'un nerge-nogood-buckets (bi b2)
(cond((nul bl)b2)

((inember (car bi) b2) (merge-nogood-buckets (cdr bi.) b2))
(t (coils (car bi) (merge-nogood-buckets (cdr bl) b2)))))

(con ((ull11)rABLul5-9. Merving Tho Ciktions of Nogocod Sets.

awakened when the iiogood set disappears. of them, becauise the network might be in a])ad state

Until the caller hams done some other clcan-up first (this is tile case in

'lhc function add- nogood-pa il simply inserts it new pair into a nogoodl list in (lhe correct
position for keeping it sorted.

The function merge-nogood- sets lakes two(lists of buckets oIf nogood sets, and merges

them into a single collection. The merging of thie top-level list takes linear times, because (ihe

buckets arc in sorted order. I lowcver. thle entries in a bucket are not sorted, and so merging two

bucket,; with tile samie value can take quadratic time. Onl the other hiand, each bucket entry (a

nogood set) is kept sorted. and so is ill a canonical form which can be compared by the isiP equal

fuinctionl (whichl is used by suich primitives ats Pleiber and assoc)-equal treats two objects of

user-defined type (by de C type) ats being equal iff they are eq.

When a value for it node is forgotten, tllen any nogood sets mentioning that value for that

node might have formerly heen suippressing all assumption and mnighlt nowv not so suppress all

assumption. [in the forget function (TFable 5-10), the old value must he remlembered internlally

hefore it is destroyed, and then used to fetch the relevant bucket (of nogood sets. Any cells of

nogoods in that bucket are adlded to fcc 1I s (the list of cells to be reCturned for Liter aw akening),

provided that they are not connected to thle cell being forgotten and tilat they Currenltly hlave no

value. (A finer filter would first lest the nogood set to see whether it actually could be Suppressing a

vailue: if too many nodes of thie nogood set were unbound, oIr had values not matching the nogood's

associated valumes, then tile nogood would not lie suppressing at vlue. Onl the othecr hand, it canlnot

hurt to awaken devices unnecessarily, except for the wasted efort involved. (Onl the third hand, to

fail to awaken at device may he a disaster! JilSussmnan 19751) The effort to filter the cells qlueued

into f ce I11 s here should be weighed against the effort oif unnlecessary re-awakening here. lis is

purely an efficiency issue that will depenld onl dewmils of a particular implementation.)

§ 5.3 Implementatio Of /ssumpAtiln fechanisins 151

(defun forget (cell &optional (source () sourcep) (via () viap))
(require-cell cell)
(and sourcep (require-cell source))
(and viap (require-cell via))
(ctrace "Removing -S from -S-:L-3.~; because -:[of ~S]].'

(node-contents cell)
(cell-goodname cell)
sourcep
(and viap (not (eq via source)))
(and viap (not (eq via source)) (cell-goodname via))
(and sourcep (cell-goodname source)))

(let ((oldvalue (node-contents cell)))
(setf (node-boundp cell) ())
(seLf (node-contents cell)
(setf (node-supplier cell) ())
(setf (node-rule cell) ())
(let ((fcells (append (rep-cells (cell-repository cell)) '())))

(dolist (c (rep-cells (cell-repository cell)))
(and (cell-owner c)

(dolist (value (con-values (cell-owner c)))
(require-cell value)
(and (node-boundp value)

(eq value (node-supplier value))
(memq (cell-name c)

(get (node-rule value) 'trigger-names))
(setq fcells (nconc (forget value cell c) fcells))))))

(dolist (nogood (cdr (assoc oldvalue (node-nogoods cell))))
(dolist (pair (cdr nogood))

(and (not (eq (car pair) (cell-repository cell)))
(not (rep-boundp (car pair)))
(setq fcells (append (rep-cells (car pair)) fcells)))))

fcells)))

Compare this with Table 4-5 (page 127).

TABLE 5-10. Forgotten Values May Re-enable Suppressed Assumptions.

If dealing with nogood sets is difficult wihen equating two nodes, it is nearly impossible when

di.olving them. I)issolving nodes (or disconnecting single cells) disrupts network connections

which had previously existed. Nogood sets implicitly contain information which is dependent on

network structure, in a form which abstracts out the structure used to derive them-their very

utility lies in this abstraction. When a node is dissolved, it may be very diflicult to determine which

nogood sets are still valid. The code here takes the easy way out-when a node is dissolved, all

nodes reachable from tile given node are visited, and their nogood collections destroyed. This is

guaranteed to be safe, nogood sets merely redundantly encache inforlation aboutt the network.

h'is information can be re-derived (at some cost, of course) for tile new topology.

It would be possible to record in each node every nogood set that depended on the connec-

tions in that node: a lodified p rem i se s fuinction could gather together the nodes gone through,

and form-nogood-set could use that list make the necessary records. Ilowever, this involves

152 CIIPTF FriIVF Miis(\PI IONS

(defun dissolve (cell)
(require cell cell)

(let ((fcells (fast-expunge-nugoods cell)))

(let ((r (gen-repository)))

(awaken-all queue))))

(awaken-all Icells))
done)

(derun disconnect (cell)
(require-cell cell)

~(let ((rcells (fast-expunge-nogoods cell)))
(let ((oldr (cell-repository cell))

(newr (9en-repository)))

(t (awaken-all (rarget cell)))))
(awaken-all fcells))

done)

('umpaice wiih Table 4-8 (page 110) and lable 4-9 (page 13 1).

TAttI F1 5- 11, IOiso nnectiones Wrcak II ao(K % 0h Nog t(d Sets.

sonlic Space and tinie overhcad. If it is assum-ed that network StRtlCttlre chan~ges slowly Coinlpar-ed to
changes of% adlte, all (flat coinIp lcx ity mnay rio~t be with wh ilc.

The changes to the di s so] ye and di sc onnec t Funtions are shownl iii Table 5-11. 1"ach

calls fast -expunge -nogoods before doing all~thifg else, and each uses gell- repos itory

instead of inake-repos itory. After all the other- wor-k is done, thenl awaken-all1 is applied
to the list of cells r-eturlned by fast-expunge-nogoods. Otherwise (lhe code is tile same ats in
Tlable 4-8 (page 130) and Taale 4-9 (page 13 1), and so thle hulk of the code is elided inl [(able S-I1l.

Tahle 5-12 contains the code ftr- fas t-ex punge - nogoods. It is a gr-aph-tmrking algorithmn

tilal simnply every nlode reatchable fr0111 the given one, and destroys thle nogood informnation
in each node \isited. The value oif fast-expunge-nogoods-mark (which is retturned by
fast -expunge -nogoods) is a list of all thle cells of all nodes Nisited which had any nogoods
in formiation. ([his could be r-elined to reCturn Oll cells with owners, or only cells ownled by
aistumptiolls.) It inariks liodes as they are v isited, and as u~sual a post- pass resets the nil-k bits.

As with al te r-nogoods -rep ([able 5-3), th~ecells arerernejiiid becaustheti nogood infor-
maiitioill beigdestr-oyed Iniighit hai formier-ly pr-evented somei assume cell froin asserting itsvialue.

Once tile nogood ill trnnation has been eflilinated (and anly ch~utges to tile network hawe been

inade by) the caller- o' fast-expunge-nogootls), then such assume cells nlust be awakened,
so that they mna) aea~~lrcac t settli au

ThIewe are a few trivial ChilgCS 1t a io itl~s rt tnties fon li e last cia pter-. Thle search f tr

premises in thle functions preises and fast-premises mnust treat assulliptions as premnises.
Because premises and fast-premises perfornt the samle wor-k huit thle latter- is faister in (lhe

AS LEM"

§ 5.3 Inmplentenalioi of iss~umplion Alchiniins 153

(defun fast-expunge-nogoods (cell)
(require-cell cell)
(prog I (fas t-expunge- nogoods-mark cel) I(ras t-expuitge- nogoods-uninark cell))

(derun fast-expunge-nogoods-mark (cell)
(requ ire-cell cellI)
(cond ((not (markp cell))

(mark-node cell)
(let ((fcells (and (not (null (node-nogoods cell)))

(append (node-cells cell)'())
(setf (node-nogoods cell) '())
(dolist (c (node-cells cell))

(and (cell-owner c)
(dolist (v (con-vallues (cell-owner c)))

(setq icells
(nconc (fast-expunge-nogoods-mark v) fcells)))))

fcel ls))
(t '()

(defun fast-expunge-iogoods-uninark (cbll)
(require-cell cell)
(cond ((markp cell)

(unmark-node cell)
(dolist (c (node-cells cell))

(and (cell-owner c)
(dolist (Y (con-values (cell-owner c)))

(fast-expunge-nogoods-uinark v)))))))

TABLI: 5-12. Raipid Dcsirution(ofi'otiiiall% Iiivagid Nc good Informatlion.

(defun fast-premises-mark (cell)
(require-cell cell)
(and (node-boundp cell)

(let ((s (node-supplier cell)))
(cond ((markp s) '()) I

(t (inark-node s)
(if (or (null (cell-owner s)) (get (node-rule s) 'tentative))

(list S)
(fast-premnises-mark.

(forlist (name (get (node-rule s) 'trigger-naines))
(*the name (cell-owners)))f)

(omnparc Ihis with Tablc 4-7 (page 129).

TAllll; 5-13. Assumnptions Are Considered to be Premisoes.

worst case, from now ()f we will show tile code onily for fa s t- prein i s es, the chlanges for which
(occurring in f as t- prem i s e s -mnak) are shown ill Tahie 5-13.

It would b~e nlice if what knew 11ow to pin~t all assume or Oileo f cell ill tile saIiC way it

is typed. Tio 111is cld a new conlventionl is in~troduiced whlereiby the OCCUrrenc1C Of i i I reefurln
designates Ilot a pill it inlstead the infro comlponenlt of it constirant. Thus1 the nlew (reefofnn
definitions in Fable 5-14 specii' ho(w to prilnt assume and oneof cells as desircd.

154 C~lIIR Flu AsSUMPTIONS

(.defprop adder ((c (+ a b)) (b (- c a)) (a (- c b))) treeforms)
(defprop multiplier ((c (* a b)) (b (// c a)) (a (// c b))) troeforins)
(defprop maxer ((c (inax a b)) (b (arcmax c a)) (a (arcmax c b))) treef'orms)
(defprop minner ((c (min a b)) (b (arcmin c a)) (a (arcmin c b))) treeforms)
(defpcop equality ((p (z a b)) (b (arc= p a)) (a (arcz p b))) treeforms)
(detprop gate ((p (0-if-unequal a b)) (b (-> p a)) (a (-> p b))) treoforms)
I(defprop assumption ((pin (assumption !))) treeforms)
I(derprop oneof ((pin (oneof !))) treeforns)

Compare this with lablc 3-15 (page 96).

TABITS -14. New tree fo ris Deflinitions.

(defun tree-form-chase (cell shallow top)
(require-cell cell)
(let ((s (node-supplier cell)))

(cond ((and shallow (node-boundp cell)) (node-contents cell))
((and (not top) (not (singlenuininarkp s)))

((cell-owner s)
(cond ((and (eq s cell) (not top)) (cell-goodname s))

(t (let ((treerori
(cadr (assq (cell-name s)

(get (ctype-name
(con-ctype (cell-owner s)))

'treefornis)))))
(cons (car treeform)

(forlist (n (cdr treeforin))
(cond ((eq n 1!1 (con-info (cell-owner s)))

((and (node-boundp s)
(not (memq n (get (node-rule s)

'trigger-names)

(t (tree-form-chase (*the n (cell-owner s))
shallow

((globalp s) (cell-name s))
(t (node-contents s)))))

Conmpare this withTablc 3-17 (page 100).

TABLE 5-16. Constructing a Treeforni with a 1.

r(make this work a few odd patches arc needed. (Large systems seldom spring forth
full-grown as from the forchead of Athena, they evolve by small chlanges.) '1c change to
tree-form-trace in Table S-1S has nothing to, do with the "I" convention. hut rather ar-
rangcs for assumption cells to be "cuts" in the same way conlstanlt cells arc. One chlange to
tree-form-deep-trace causes "I" not to bc treated as a pin name: the other, and also the
change to tree-form-deep , allows a treefonil not to exist for some constraints, in whlich case
that constraint is passed by and another tried. This will be useful later for avoiding the use of
certain uninteresting constrain t-types in explanations.

§ 5.3 lmplenieniaion of Assuinpi on Alechanismns 155

(defun tree-form-trace (cell shallow)
(require-cell cell)
(cond ((node-boundp cell)

(let ((s (node-supplier cell)))
(cond ((cell-owner s)

(and (get (node-rule s) 'tentative) (nulunark cell)) ;crock
(or shallow

(tree-formn-trace-set (cell1-owner s)
(get (node-rule s) 'triggor-names)
shallow)))

(t (nummark cell))))) ;crock
(t (let ((cells (node-cells cell)))

(setf (node-supplier cell)
(or (if shallow

(or (tree-fori-shallow coil cells)
(tree-form-deep cell cells shallow))

(or (tree-form-deep cell colls shallow)
(tree-form-shallow cell cells)))

(if (cell-owner cell)
(tree-formn-deep-trace cell shallow)
cell)))

(defun tree-form-deep (cell cells shallow)
(do ((z cells (cdr z)))

((null z) ())
(and (not (eq (car z) cell))

(cell-owner (car z))
(let ((q (tree-form-deep-trace (car z) shallow)))

(and q (return q))))))

(defun tree-form-deep-trace (cell shallow)
(let ((treerorm

(cadr (assq (cell-name cell)
(get (ctype-name (con-ctype (cell-owner cell)))

(cond (treeform tefrsM

(tree-form-trace-set (cell1-owner cell)
(remiq '! (cdr treeform))
shallow)

cell))))

Compare this with Table 3-16 (page 98).

TMni 5-15. Tracing Missing Trccforms and rircefornis with 1.

Finally, tree-form-chase must ill ill the infoa COmpone~nt when it sees a "I", in the
treeform:n this is shown in Tlable 5-16 (part of the code has becn omlitted, it is thc same as in Table
3-17 (page 100)).

TlhecCode ill Tablc 5-17 has nothing whatsoever to do with asstllilptions: it just patces a

hug described in §4.2, whcie a solution had b~een promlised. T'he patch is that p races s -se tc,
before signalling a contradictionl, remembiers tile values which triggered the rule which invoked
process -setc.ThIe setc is retried only if all the triggers still have those values.

156 CIIAPTER FIVE ASSUmI'IlIONS

(defun process-setc (*me* name cell value rule)

rule)
(let ((values (forlist (tr triggers) (node-contents tr))))
(process-contradiction (cons cell triggers))
(do ((x triggers (cdr x))

(v values (cdr v)))
((null x) (process-setc .me* name cell value rule))

(or (and (node-boundp (car x))
(equal (node-contents (car x)) (car v)))

(return)))))))))

'Ibis code patches a prolrni in iic code in lablc 4-3 (page 124).

Tui.i,5-17. A Mrc Rclihablc Vcrsion of process-setc.

The solution was delayed until this chapter. rather than being given in Chapter Four. because
now we are in a position to poke a hole in this solution. With the advent of such strange rules as
as sumpt i on -ru I e. which in effect trigger on the ab.ence of a value rather than the presence of
one, it is not clear that this patch is adequate. It will work for presently defined rules, hut may not
be general enough for other types ti-trlCs.

,!

§ 5.4 I'xamiples qf ihe Use of Assumpliotis 157

5.4. Examples of the Use of Assumptions

To illustrate thc uses of assumptions, two examples arc given here. One illustrates the special

cases needed (0 awaken as sume cells: thc other uses oneotf cells and some additional constraints
to solve the C0our queens problem.

5.4.1. Simple Assumpt ions Are Persistent

To exhibit thc behav ior of' simple assump~tions, we will ring die changes on a simnple maxe r
device. lIn the following example. all c trace output con~cerning the awakening of devices has

been suppressed without trace (p)un intended). All other trace output is shown here.

(create u maxer)
<U:MAXER-61>

If'the a is assumed to be I and the b is assumned to be 2. then from tse assumed values the
maximum 2 can he computed.

(=(tihe a u) (assume 1))
;I(ASSUMPTION-68:ASSUMPTION-68> computed I tar its part PIN.
DONE

(=(the b u) (assume 2))
;l(ASSUMPTION-71:ASSUMPTION-7I> computed 2 for its part PIN.
;l<U:MAXER-6I) computed 2 for its part C trom pins A, B.
DONE

Interrogation indicates that indeed the c was compuited in this way.

(what (the c u))
:The value 2 in CELL-67 was computed in this way:

(THE C U) +- (MAX (ASSUMPTION 1) (ASSUMPTION 2))
OKAY?

Now we shall insist (by a de f au 1 t, statement) that the c really ought to be 3.

('(the c u) (detault 3))
;JContradlction when mnerging <CELL-67 (C of' U): 2> and (CELL-75 (DEFAULT): 3>.
;foeeming 2 in CELL-73 (computed by rule ASSUMPTION-RULE) to be the culprit.
.lThe set (THE PIN ASSUMPTION-68)=i, (THE PIN ASSUMPTION-71)=2,
:1 CELL-75=3 is no good.
;JRetracting the premise <CELL-73 (PIN of ASSUMPTION-li): 2>.
;lRemoving 2 from (THE PIN ASSUMPTION-li).
jlRemovlng 2 from (THE C U) because (THE B U)='(THE PIN ASSUMPTION-li).

158 ClIAPIIR FIVi ASSUiMP IIONS

;<U:MAXER-61> computed 3 for its part B from pins A, C.
DONE

'lliis of course caused a contradiction between the defitilt value 3 and the computed value 2.

Because the latter was computed from assumptions, one of the assumptions was arbitrarily chosen

to be the culprit and retracted.4

(what (the c u))
;The value 3 in CELL-67 was computed in this way:

(THE C U) -- 3
OKAY?

Indeed the value 2 has disappeared, and been replaced by the specified de fau l t value.

(what (the a u))

:The value I in CELL-63 was computed in this way:
(THE A U) +- (ASSUMPTION 1)

OKAY?

The assumption for a is still in force.

(what (the b u))
;The value 3 in CELL-65 was computed in this way:

(THE B U) -- (ARCMAX 3 (ASSUMPTION 1))
OKAY?

On the other hand, the assumption for b has been retracted, and b was computed from the default

value 3 and the assumption 1.

Now, to make things more complicated, let us insist that a be 5.

(== (the a u) (default 5))
:lContradiction when merging <CELL-63 (A of U): 1> and <CELL-77 (DEFAULT): 5>.
;lDeeming 1 in CELL-70 (computed by rule ASSUMPTION-RULE) to be the culprit.

;IThe set (THE PIN ASSUMPTION-68)=I, CELL-77=5 is no good.
;IRetracting the premise <CELL-70 (PIN of ASSUMPTION-68): 1>.
:fRemoving I from (THE PIN ASSUMPTION-68).

'he default alte 5 conflicted with ie assumed value t, and the latter was therefore retracted. A

nogood set was formed in the preces.

:jRemoving 3 from (THE B U) because (THE A U)==(THE PIN ASSUMPTION-68).
;I<ASSUMPTION-71:ASSUMPTION-71> computed 2 for its part PIN.

:I<U:MAXER-61> computed 3 for its part A from pins 8, C.

4. Note that if Wvcral asumptons arc inolvcd. the systcm currently chooses one aibitrarily. It might be useful to
have a 'hook" to allow a user function to discnunatc among assumpions.

96- - -, ,W

§ 5..1/xainples tf Ike Use of Aissumpions 159

The value 3 for b had been compu11.ted fromn tile assumiption 1, and so mnust he retracted also. Once

this is done, die old assumption forj b is free to re-asscrt thle valuc 2. [roim this assumption and

the value 3 on c, the %atuc 3 = arcmaX3 2 can bc computed for a. This Of Course contradicts thc

default value 5 just placed there.

;IContradiction when merging <CELL-63 (A of U): 3) and <CELL-77 (DEFAULT): 5).

;lDeeming 2 in CELL-73 (computed by rule ASSUMPTION-RULE) to be the culprit.

;lThe set (THE PIN ASSUMPTION-7l)=2, CELL-7?5=3, CELL-77=5 is no good.
;lRetracting the premise (CELL-13 (PIN of ASSUMPTION-71): 2).

;iRemoving 2 from (THE PIN ASSUMPTION-il).
;lRemoving 3 from (THE A U) because (THE B U)==(THE PIN ASSUMPT[ON-il).

The contradiction rested on the assumption of 2 for 1b, and so it was dceemed the culprit and

retracted again, along withi its consequences.

There remains it more fundainental contradiction, however: the default value 5 for a is
incompatible with die default value 3 for c.

:lContradiction in <U:MAXER-61) among these parts: A=5, C=3.
These are the premises that seem to be at fault:

<CELL-77 (DEFAULT): 5>,
(CELL-iS (DEFAULT): 3>.

;;Choose one of these to retract and RETURN it.

We choose to retract the value 3 from c.

(return cell-75)
;lRetracting the premise <CELL-75 (DEFAULT): 3>.
-[Removing 3 from CELL-75.
;l<ASSUMPTION-71:ASSUMPTION-71> computed 2 for its part PIN.
;I<U:MAXER-61> computed 5 for its part C from pins A, B.
DONE

Once the value 3 has been retraecd, the assumption for lb is free to re-assert the value 2. T'his

occurs because when the default value 3 is forgotten for c, the nogood set ((b, 2), (c, 3), (a, 5)) is

examined in the function f orget and all relevant owners awakened. Front this assumed value 2

and the default value 5. the value 5 is computed f'or c.

(what (the a u))
;The value 5 in CELL-63 was computed in this way:

(THE A U) 4- 5
OKAY?
(what (the b u))
;The value 2 in CELL-65 was computed in this way:

(THE B U) *-(ASSUMPTION 2)
OKAY?
(what (the c u))

160 CI lAV IFR FiviE Aswt:i, lioNS

;The value 5 in CELL-67 was computed -n this way:
(THE C U) -(MAX 5 (ASSUMPTION 2))

OKAY?

No%% a = 5, b =2. and c =5.

Suppose now that we aissert thle deI'atilt NaIlue 0 for' c. This is sim tar to the situation earlier

wherc 3 was asserted for c, v, ith one differece: then, thc asstumed values a -I and b = 2 were
indk~iduatty conmpatiblc with c =3, and only in coi bnation contradictory: here, however, thc
.lsstniptions are indidually incomlpatible A ith c = 0. and so we expect boilh OSSUnIptionS to beC
sup~pressed.

(~(the c u) (default 0))
IContradiction when merging <CELL-67 (C of U) : 5) and <CELL-79 (DEFAULT) : 0).

;loeeming 2 in CELL-73 (computed by rule ASSUM.PTION-RULE) to be the culprit.
;j1he set (THE PIN ASSUMPTION-71)=2, CELL-77=5, CELL-79=0 is no good.
;fRetracting the premise (CELL-73 (PIN of ASSUMPTION-il): 2>.
:fRemoving 2 from (THlE PIN ASSUMPTION-il).
;lRemoving 5 from (THE C U) because (THE B U)==(THE PIN ASSUMPTION-71).

The computed %alue 5 in c conflicted with thle ne~k value 0, and was withdrawn because it de-
pended onl an assumption.

;lContradiction in <U:MAXER-61) among these parts: A=5, C=O.
These are the premises that seem to be at fault:

(CELL-77 (DEFAULT): 5>,
< CELL-79 (DEFAULT): 0).

Choose one of these to retract and RETURN it.

Moreover, tie value 5 in for a conflicts with the value 0 for c. We will retract thle value 5 for a.

(return cell-79)
;lRetracting the premise (CELL-77 (DEFAULT): 5>.
;lRemoving 5 from CELL-77.

At this (highly volatile!) point, the only value extant is 0 for c. I lowever. the assnanipions are about
to be awakened.

:j(ASSUMPTION-71:ASSUMPTION-71> computed 2 for its part PIN.
:Contradiction in <U:MAXER-61) among these parts: B=2, C=O.
;IDeemino 2 in CELL-73 (computed by rule ASSUMPTION-RULE) to be the culprit.
;jThe set (THE PIN ASSUMPIION-1)=2, CELL-i9=0 is no good.
;lRetracting the premise (CELL-73 (PIN of ASSUMPTION-il): 2>.

;lRemoving 2 from (THE PIN ASSUMPTION-it).

'Ilie assumption for b tries out the valtue 2 and is rebuffed. A nogood set is formed, and thle
assuimptionl retracted.

§ 5.4.2 l'xamples oj'ihe Use of Assumptions 161

;l<ASSUMPTION-68:ASSUMPTION-68) computed 1 for its part PIN.

;IContradiction in <U:MAXER-61> among these parts: A=1, C=O.

;JDeeming I in CELL-70 (computed by rule ASSUMPTION-RULE) to be the culprit.

;JThe set (THE PIN ASSUMPTION-68)=I, CELL-79=O is no good.

;jRetracting the premise <CELL-70 (PIN of ASSUMPTION-68): 1>.

;lRemoving I from (THE PIN ASSUMPTION-68).
DONE

Precisely the same Iae befalls the other assumption of I for a. It is still the case that die only extant

value is 0 fir c. lHowever, it is now known why the assunIptions cannot hold, and this information

has been recorded in nogood sets.

(what (the a u))

;CELL-63 has no value. I can express it in this way:

(THE A U) = (ASSUMPTION 1)

OKAY?
(what (the b u))

;CELL-65 has no value. I can express it in this way:
(THE B U) = (ASSUMPTION 2)

OKAY?

hlhese explanations are a little strange. Probably what should be augmented to use nogood infor-

mation to explain die absence ofa value, but this thought is not pursued here.

Vet us finally disconnect c from the other cells of its node (and in particular the default

cell supplying the value 0).

(disconnect (the c u))

;lOisconnecting (THE C U) from CELL-75, CELL-79.
;JRemoving 0 from (THE C U).

;I<ASSUMPTION-71:ASSUMPTION-71) computed 2 for its part PIN.

;I<ASSUMPTION-6-8:ASSUMPTION-68> computed I for its part PIN.

;J<U:MAXER-61> computed 2 for its part C from pins A, B.

DONE

Disconnecting c fiom the source of the value 0 causes all the old nogood information to be ex-

punged. This awakens the assumptions, whicl. find no nogood sets to suppress their values. From

the assumptions a new value is computed for c.

(what (the c u))

;The value 2 in CELL-67 was computed in this way:

(THE C U) #- (MAX (ASSUMPTION 1) (ASSUMPTION 2))

OKAY?

This brings us full circle, to the beginning of the example.

I 1.

162 CIIAVIFFR FIvr- ASSUMI"IONS

(declare (special *contradictions* *backtrackso))

(defun queens (n)
(setq ocontradictionse 0)
(setq *backtrackso 0)
(queens3arch '() n 0)
(format L "-%Total of -D contradictions and -D backtracks."

contradictions *backtracks,)
'done)

(defun queensearch (previous n k)

(cond ((= k n)
(format

t
"%Solution: ((D-t-) after -D contradictions and -D backtracks."

(reverse previous) *contradictions* *backtracks,))
(t (dotimes (i i)

(do ((x previous (cdr x))
(J 1 (+ j I)))
((null x)
(queensearch (cons i previous) n (+ k 1)))

(cond ((or (= i (car x)) ;column test
(= (- i (car x)) j) ;diagonal test
(- (- (car x) i) j)) ;other diagonal test

(ctrace "Contradiction: (~{~D-t,~) kills -D."

(reverse previous) i)
(increment *contradictions*)
(return)))))

(increment *backtracks.))))

TAnBIE 5-18. A LIS], Solution to the N Queens Problem.

5.4.2. Oneof Assumptions Can Express and Solve the Four Queens Problem

The generalized N queens problem is that of placing N chess queens on all N by N
chessboard so that no two queens attack each other; that is to say, no two queens arc on the same
row, column, or diagonal. The usual approach notes that every row must have exactly one queen on
it, and then tries to place one queen on each row. Using this idea the problem may be formulated
as: for 0 < i < N find 0 < qi < N such that

ViVj ((O< i<NAO j<NAi3j) -
(qj 3 q, A qj - qi j- A qj - q. 34 i - j))

This is a standard problem used to illustrate backtracking control stnrctures, because a solution
to the problem can easily be expre:;scd as a non-deterministic program: for each row, non-
deterministically choose a column in that row: then check to see whether there is a conflict on any
column or diagonal. In a sequential simulation of a non-deterministic program, a conflict causes a
failure back to the most recent choice point.k - - -

§ 5.4.2 lXamples of he Use of Assmnptions 163

A hLSi program for the usual solution to the N queens problem is shown in Table 5-18.

Rather than using explicit backtracking and failure mechanisms, it merely takes advantage of the

observation in [Sussman 19721 that chronological backtracking mechanisms are equivalent to a

series of nested do loops. FIach recursive call to queensearch tries to choose a column fir

one row (row k, rows and columns are numbercd starting with 0). It loops o'er all choices from

0 to N - I using dot imes, and fir each choice checks for a conflict %ith all previous choices

(which are in the list previous). Ifi a conflict is l0und, a contradiction is noted via the trace

mechanism and a counter *contr ad ict ions* incremented (for staiStical. not algorithmic, pur-

poses). If no conflict exists, the choice is added to the previous list anda recursive callI made to

choose for the next row. If all choices fail, either immediately or because a recursive call returned,

then queensearch returns (after incrementing another counter, *backt racks*) so that the

previous row may try a new choice. (The program as it stands will find all solutions, not just one.

'o find just one, a non-local exit could be made aftcr printing a solution.)

As an example of running the queens program, here is the output (with tracing turned off)

for the cases N = 4, N = 6, and (in part) N = 8:

NIL
(queens 4)
Solution: (1,3,0,2) after 18 contradictions and 4 backtracks.
Solution: (2,0,3,1) after 26 contradictions and 7 backtracks.
Total of 44 contradictions and 15 backtracks.
DONE
(queens 6)
Solution: (1,3,5,0,2,4) after 140 contradictions and 25 backtracks.
Solution: (2,5,1,4,0,3) after 334 contradictions and 64 backtracks.
Solution: (3,0,4,1,5,2) after 408 contradictions and 79 backtracks.
Solution: (4,2,0,5,3,1) after 602 contradictions and 118 backtracks.
Total of 742 contradictions and 149 backtracks.
DONE
(queens 8)
Solution: (0,4,7,5,2,6,1,3) after 763 contradictions and 105 backtracks.

[Ninet;' solutions oinitted.]
Solutiin: (7,3,0,2,5,1,6,4) after 12901 contradictions and 1852 backtracks.
Total of 13664 contradictions and 1965 backtracks.
DONE

The two solutions for N 4 are:

0

164 CIIAPrI'R FivE. AsS.AWFI ONS

'Thc trouble with chronological backtracking is that often choices are undone because of
failures that did not (necessarily) stem from those choices. Suppose, for example, that for the 6
queens problem queens have been successfully placed in the first four rows, and a choice is to be
made for the last row:

None of the squares of the last row is a valid place for a queen. Under a chronological

backtracking regime, this failure will first cause a new choice fior the queen in the second-to-last
row. This is somewhat paradoxical, as the configuration for the first fou rl rows collectively kills

all squares of the last row, and so cannot appear in any valid solution, while the queen in the
penultimate row can appear in that column in a valid solution!

Another problem with chronological backtracking is that when a failure occurs all information
as to why that failure occurred is thrown away. ISlssman 19721 In the context of the N queens
problem, it can well occur that a large series of configurations for the last several rows is tried and

disLardedthen failure causes one queen in an early row to be nudged over. and then many of the
same configurations of de last several rows must be investigated once again-exen if their failure
had not depended on the queen that got nudged!

The I ISP program of Table 5-18 examines eighteen invalid board positions before finding
a solution. These are shown in Figure 5-8. The small dark circles indicate queens. A line

drawn between two queens indicates a conflict on a column or diagonal. A light circle around a
queen indicates the culprit-the one which will be changed as a result of the contradiction (under
chronological backtracking, the culprit is always the last queen placed). A bold circle around a
queen indicates an indirect culprit-a queen that must be moved because all the choices for the

previous culprit had been exhausted.

The contradiction in situation (g) is the same as that in siluation (c). This contradiction had to
be rediscovered when the queen in the second row was moved, even though that queen had had
nothing to do with the contradiction. '[here are no other examples of this in the N = 4 case, but

for large N it happens quite frequently.

§ 5.4.2 L'-wiileSc oultiw Use~ of~'ssumupiio,,s 165

_p 0

a)(1) (g) (h)

0 G 0 0
aa a a

* 0

(q) (S) I

© IUt;-.Stmin xmle o o Q ijcisUigCno~gcdB~rci

166 CIIAPrIER Fivi. AssumlITIONS

(variable q0) (variable qI) (variable q2) (variable q3) ;variables
(create eOt equality) ;column constraints
(create e02 equality)
(create e03 eqIuality)
(create e12 equlality)
(create e13 equality)
(create e23 equal ity)
(~(the a e01) qO) (~(the b eOl) qi) (~(the p eOl) (constant 0))
(~(the a e02) qO) ((the b e02) q2) (~(the p o02) (constant 0))
(~(the a e03) qO) (~(the b e03) q3) ((the p e03) (constant 0))
(~(the a el2) qi) (~(the b e12) q2) (~(the p e12) (constant 0))
(~(the a e13) qi) (~(the b e13) q3) (~(the p e13) (constant 0))
(~(the a e23) q2) (~(the b e23) q3) (~(the p e23) (constant 0))

TABHl. 5-19. Constraints for the Four Queens Problem (i).

(create xe0I equal ity) (create xaOt. adder) ;northwest-to-southeast
(create xeO2 equality) (create xa02 adder) diagonal constraints
(create xeo3 equality) (create xaO3 adder)
(create xe12 equality) (create xa12 adder)
(create xel3 equality) (create xa13 adder)
(create xe23 equality) (create xa23 adder)
(~(the a xa~l) qO) (~(the c xa~l) qI) (~(the b xa~t) (the a xe~l))
(~(the a xaO2) qO) (~(the c xca02) q2) (~(the b xaO2) (the a xeO2))
(~(the a xaO3) qO) (~(the c xaO3) q3) (z (the b xaO3) (the a xeO3)) ~

(thea x12)ql) thec xl2)q2) theb xl2) thea x12s

((the a xal2) qi) (~(the c xal2) q3) (~(the b xa13) (the a xel2))
((the a xa23) q2) ((the c xal3) q3) (~(the b xa23) (the a xel3))
((the a xa23) (cnsan 1)) (the a2) q) ((henbtan3 th a x23)
((the b xe02) (constant 1)) (~(the p xe02) (constant 0))
((the b xe03) (constant 2)) (=(the p xeO3) (constant 0))
((the b xeO3) (constant 3)) (=(the p xeO3) (constant 0))
((the b xel2) (constant 1)) (=(the p xe12) (constant 0))
((the b, xe23) (constant 2)) (~(the p xel3) (constant 0))

TABILE 5-20. C'onstraints for tile Four Queens Problem (hi).

§ 5.4.2 Examples of Me Use of Assumplions 167

(.createyeOl equality) (create yaOl adder) ;southwest-to-northeast
(create yeO2 equality) (create ya02 adder) diagonal constraints
(create ye03 equality) (create ya03 adder)
(create ye2 equality) (create ya1 adder)
(create yet3 equality) (create yal3 adder)
(create ye23 equality) (create ya23 adder)
(== (the a yaOl) qO) (= (the c yaOl) ql) = (the b yaOl) (the a yeOl))
(== (the a yaO2) qO) (= (the c ya02) qZ) (= (the b ya02) (the a ye02))
(= (the a ya03) qO) (:: (the c yaO3) q3) (= (the b ya03) (the a yeO3))
(= (the a yal2) ql) (= (the c yal2) q2) (: (the b yal2) (the a yelt))
(= (the a yal3) ql) (= (the c yal3) q3) (= (the b yal3) (the a yel3))
(~(the a ya23) q2) (~(the c ya23) q3) (~(the b ya23) (the a ye23))

(= (the b yeOl) (constant -1)) (= (the p yeOl) (constant 0))
(:= (the b ye02) (constant -2)) (= (the p yeO2) (constant 0))
(== (the b ye03) (constant -3)) (= (the p ye03) (constant 0))
(= (the b yel2) (constant -1)) (= (the p yel2) (constant 0))
(= (the b yel3) (constant -2)) (= (the p yel3) (constant 0))
(== (the b ye23) (constant -1)) (= (the p ye23) (constant 0))

TABLE 5-21. Constrain for the Four QuCCns Prublem (iii).

(= qO (oneof '(0 1 2 3))) ;assumptions
(= ql (oneof '(0 1 2 3)))
(= q2 (oneof '(0 1 2 3)))
(= q3 (oneof '(0 1 2 3)))

TABitIE 5-22. Constraints for (he Four Qucens Problem (iv).

168 CIIAPTER FIVE AsstAINIONS

qO ql q2 q3,13

P-11 lEOl - FIE12 L7-JE323

E03 X
L-ZEOF

ZE02 11 E H3
E02 -F E13

+ + +

X X
I- XAOI XA12 A23

g Xr'12 + ?XE23 X+A23
XEOI XE12 XE23

X
+

2 2
XE02 XA02 XE03 XA03 XE13 XA13

j rXEO3

3

+

YEO I Y BAO

YEOI YAOI YE12 YA12 YE23 YA23

X
+

-2 -2
YE02 YA02 YE03 YA03' YE13 YA13

.3

+
X

LLGEND
0

means

Fim:iu 5-9. Contraint Nctork for the Folir Qiicem Probicni.

§ 5.4.2 FUxamplce of th~e Use ofIAsstnpions 169

Table 5-19, 'Table 5-20, '[able 5-21, and'table 5-22 show thc constraints fot' the case of four
queens. 'The variables qO. q I, q2, and q3 recpresent the columin numbers of the qucens in rows
0, 1, 2, and 3. respectively. '[he equalities e inn have their p pins equated to zero, and so require
that q in and qn iie different, for cacth pair in. n. 'The equalities xemin and the adders xaIn
enforce the iclationships qn- q in - m: similarl%, the equlalities yein and the addcrs yain
enforce the relationshipscqIn - qni m -- n. hIe cooistintiis arc diaigrammiiied in Figure 5-9.

Running this constraint network Causes twelhe contradictions to occur before a %alid situation
is aieveiCd (killid Sit nt ii ns Ofu rse econst ituiite soilu tions to the problem). TIhe sequence of situa-
tions considered is shiow i in Figure 5-10. It initially filolo s the samec sequceIC of situations as inl
Figure 5-8. except that situation (g) is skipped O~ rOW(becs that contradiction had been explored
already. and the i'ecoi'd shows that it is independent of' q 1). Note, hlo~ e~er. that unlike the I tsi,
programn of t'able 5-18. the constraint system does not guarantee to check the constraints in any
particular' order. Thie i sir program always finds a conti'adiction with the most recent already ltaced
queen that conflicts. hecaiisc it searches the rows in) that order. 'The constraint language does not
specify any tenmporal ordering, and the system is free to check the constraints in any order (or even)
in Parallel). I1h1s, for example. In situat~ion (I) the syslemi happened to record a conflict between q3
and q I rather than hetv ccii q3 and q2. tither conflict is an equally good reason for rejecting the
situation. Similarly, in situation (k) the %% steini noted a contradiction between q3 and qO where
the I ISP program had seen a conflict between q3 and q 1. Moreover, in situation (k) the I tsip
program chose q2 as the indirc-ci ciliprit. becaiie it moist alwa3 s retract the most recent choice,
whether relc~ant or not: hut (lhe consiraint swsein was fiee to choose anY previous relev'ant choice
as the culprit, and inl fact it serendipitoust chose qO. producing situation (x). From there it was
only two more steps to a solutimn. (Note that a saiation (z.) with q3 = I was skipped over because
of the contradliction pieviotril) recorded for situation (i).)

'The trace output fromn thme run is gi~en here in condensed fim without commentary. Trace
messages conicerning awakening of'ddevices and i'emnio ing oif values hame been eliminated, as have
messages saying that de% ices computed vlules for their parts, except that those concerning the
oneof cells have been retained.

I(ONEOF-889:ONEOF-889> computed a for its part PIN.
;l<OAEOF-8g2:ONEOf-892> computed 0 for its part PIN.
:IContradiction in <EOl:EQUALITY-619> among these parts: P=O, A=O, 8=0;
;I it calculated I for P from the others by rule EQUALITY-RtJLE-16.
;lDeeming 0 in CEIL-894 (computed by rule ONEOF-RuLE) to be the culprit.
;IThe set CELL-662=0, (THlE PIN ONEOF-889)=0, (FIlE PIN ONE0F-892)=0 is no good.
;IRetracting the premise (CELL-894 (PINJ of ONEOF-892): 0>.
;I<ONEOF-892:ONE0F-892) computed I for its part PIN.
;IContradlctlon in (XEOl:EILIALITY-6573 among these parts: P=O, A=I, 8=1;

170 ClICAPII R FHvi: AsLNIPIIONS

(a) Cb C) (d)

L~ -*

C) Wl Wh (Y)

* iUM 5-0 SiutosEaic oSorQeisUsn o-hoooia akrci

; hesC EL -581 C k)-600 TH I CxOF8) (y

(TEPNOEF82- sn od

§ 5.4.2 I'xatiiples (411we Lw of Assuipliwis 171

;IRetracting the premise (CELL-894 (PIN of ONEOF-892): 1>.
;I(ONEOF-892:ONE OF-892) computed 2 for its part PIN.
:I(ONEOF-895:ONEOF-895> computed 0 for its part PIN.
;jContradiction in <E02:EQUALITY-626> among these parts: P=0, AzO, B=O;
;I it calculated I for P from the others by rule EQUALITY-RULE-16.
:IDeeming 0 in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.

;IThe set CELL-664=0, (THE PIN ONEOF-889)=0, (THE PIN ONEOF-895)0O is no good.
;lRetracting the premise <CELL-897 (PIN of ONEOF-895): 0>.
I(<ONEOF-895:ONEOF-895> computed 1 for its part PIN.
IlContradiction in <YE12:EQUALITY-823> among these parts: P=O, A=-1, B=-1;

it calculated 1 for P from the others by rule EQUALITY-RULE-16.
;lDeeming I in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.
lihe set CELL-878=-1, CELL-8R0=0, (THE PIN 0NE0F-892)n2,
;I (THE PIN 0NEOF-895)=1 is no good.

;lRetracting the premise (CELL-897 (PIN of ONEOF-895): 1>.
;j(ONE0F-895:ONEOF-895> computed 2 for its part PIN. -

IlContradiction in (XEC2:EQUALITY-687> among these parts: P=O, A=2, B=2;
;I it calculated 1 for P from the others by rule EQUALITY-RULE-16.
;IDeeming 2 in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.
:IThe set CELL-762=2, CELL-764=O, (THE PIN ONEOF-889)=0,

:1 (THE PIN ONEOF-895)=2 is no good.
:lRetracting the premise (CELL-897 (PIN of ONEOF-895): 2>.. k-

;I(ONEOF-8g5:0NE0F-895> computed 3 for its part PIN.
IlContradiction in (XEI2:EQUALITY-715) among these parts: P=O, A=I, B=I;

:1 it calculated 1 for P from the others by rule EQUALITY-RULE-16.
;lDeeming 3 in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.]
;jThe set CELL-770=1, CELL-772=0, (THE PIN ONEOF-892)=2,

:1 (THE PIN ONEOF-895)=3 is no good.
;lRetracting the premise (CELL-8g7 (PIN of ONEOF-895): 3>.
;IAll of the values (0 1 2 3) for (THE PIN ONEOF-895) are no good.
;lDeeming 2 in CELL-894 (computed by rule ONEOF-RULE) to be the culprit.
;[The set CELL-664=0, CELL-762=2, CELL-764=0, CELL-770=1, CELL-772=O,
:1CELL-878=-1, CELL-880=0, (THE PIN ONEOF-889)=0,
:1(THE PIN ONEOF-892)=2 Is no good.

;lRetracting the premise (CELL-894 (PIN of ONEOF-892): 2>.

Ij<ONEOF-8g2:ONEOF-892> computed 3 for its part PIN.
;I<ONEOF-895:ONEOF-895> computed I for its part PIN.

;j(oNEOF-8g8:ONEOF-898> computed 0 for its part PIN. I

;IContradlction in <YE23:EQUALITY-851> among these parts: P=O, A=-I, 0=-I;
;I it calculated I for P from the others by rule EQUALIIY-RULE-16.
;lDeemlng 0 in CELL-900 (computed by rule ONEOF-RULE) to be the culprit.

;IThe set CELL-886=-1, CELL-888=0, (THE PIN ONEOF-895)=1,

;I (THE PIN ONEOF-898)=0 is no good.
;lRetracting the premise <CELL-900 (PIN of ONEOF-898): 0>.
;I(ONEOF-898:ONEOF-898> computed 1 for its part PIN.
;lContradiction in (YEI3:EQUALITY-837> among these parts: P=0, A=-2, B=-2;
:1 it calculated 1 for P from the others by rule EQUALITY-RULE-16.

;loeemlng I in CELL-900 (computed by rule ONEOF-RULE) to be the culprit.

172 CI IAPIIFR IVI: ASSUNI11 IONS

;IThe set CELL-882=-2, CELL-884=O, (THE PIN ONEOF-892)=3,
;I (THE PIN ONEOF-898)=1 is no goad.
;lRetracting the promise (CELL-900 (PIN of ONEOF-898): 1>.
;I(0NEOF-898:ONEOF-898> computed 2 for its part PIN.
;IContradictiol in <XE23:EQUALITY-743> among these parts: P=' A=I, B=1;

:1 it calculated 1 for P from the others by rule EQIJALITY-RULE-16.
:loeeming 2 in CELL-900 (computed by rule ONEOF-RULE) to be the culprit.
li~he set CELL-778=I, CELL-780=0, (THlE PIN ONEOF-895)=1,

:1 (THE PIN 0NE0F-898)=2 is no good.
;lRetracting the premise (CELL-900 (PIN of 0NEOF-898): 2).
I(0NE0F-898:0NEOF-898> computed 3 for its part PIN.
IJContradiction in <XEO3:EQUALITY-7C1) among these parts: P=O, A=3, 8=3;
:1 it calculated 1 for P from the others by rule EQUALITY-RULE-16.
;IDeeming 3 in CELI -900 (computed by rule ONEOF-RULE) to be the culprit.
;IThe set CELL-766=3, CELL-768=0, (THlE PIN ONEOF-889;=0,

;I (THE PIN ONEOF-898)=3 is no good.
;IRetracting the premise (CELL-900 (PIN of ONEOF-BOB): 3).
;JI] of the values (0 1 2 3) for (THE PIN ONEOF-898) are no good.
;Joeeming 0 in CELL-891 (computed by rule ONEOF-RULE) to be the culprit.
;IThe set CELL-766=3, CELL-768=0, CELL-778=1. CELL-780=0, CELL-882=-2,

CELL-884=0, CELL-886=-1, CELL-888=0, (THE PIN ONEOF-889)=0,
(THE PIN 0NE0F-892)=3, (THE PIN 0NEOF-895)=1 is no good.

;IRetracting the premise <CELL-89i (PIN of ONEOF-889): 0.
:I(ONEOF-889:0NEOF-889> computed I for its part PIN.
IlContradiction in (E02:EQUAL.ITY-626> among these parts: P=O, A=1, 8=1;

;I it calculated I for P from the others by rule EQUALITY-RULE-16.
:JDeeming 1 in CELL-9 (computed by rule ONEOF-RL)t eteclrt
;IThe set CELLV664=0, (THE PIN ONE0F-889)=1, (THE PIN ONEOF-895)=I is no good.
;lRetracting the premise (CELL-897 (PIN of 0NE0F-895): 1>.
;I<0NEOF-895:ONEOF-895> computed 0 for its part PIN.
;j<0NEOF-898:0NEOF-898> computed 0 for its part PIN.
jlContradiction in (E23:EQUALITY-654) among these parts: P=O, A=O, 8=0;
;Iit calculated 1 for P from the others by rule EQUALITY-RULE-IG.

:J~eeming 0 in CELL-900 (computed by rule ONEOF-RULE) to be the culprit.
;IThe set CELL-672=0, (THE PIN 0NE0F-895)=0, (THE PIN ONE0F-898)=0 is no good.
IlRetracting the premise (CELL-90O (PIN of ONEOF-898): 0).

;I(0NEOF-898:ONEOF-898> computed 2 for its part PIN.
DONE

This exarnpic shows that a dcpendency-dirccted backtracking systcmi is at least potentially
mutch more efficient than it chironological backtracking systcin. Of course, this ruin was at little lucky-,
it could just ats easily haw. foIllowed the samic path as the Ilisp prograrn, skipping only situiation

(g). If, however. there were at higher-lc'.l decision function controlling which conistraints to try
first, theii thc syscmr might always performi iuch hetter. (Tlius we are lead to the idea of incta-

constraints, for controlling the operalions of the constraint interpreter.) Suppose, for example, that
at dcpendcncy-directcd backtramcking systemn for the N quecns 1)101)1cm were always to obcy these

§ 5.4.2 Ixamples q'jhe Use of Assum tions 173

additional efficiency heuristics:

e The first k quccns must be validly placed before trying to place queen k + 1. ('he constraint
system happened to behave in this manner for the previous example, but the constraint lan-

guage does not guarantee to try the assumptions in a nested-loop order. The system is in
principle free to try assumptions in any order-but this fact is being suspended as a heuristic

here.)
e When checking a placcmcnt for a queen and it conflicts with more than one previously placed

queen, the leasi recently placed conflicting queen should be held responsible for the conflict.
(This is equivalent to checking previous queens in the reverse of the order used by the I.lSP

program.)

* Whei, a culprit must be chosen, always choose the most recently placed queen of those respon-

sible for the contradiction (according to the records).
If these ordering heuristics arc follow'ed, then sixteen invalid positions are tried before a solution is
found.

To point up once more the need for explanation mechanisms to exploit the nogood sets, here
are given the explanations for the values of qO, q1, q2, and q3 at the end of the above run.

(what qO)
;The value I in CELL-612 was computed in this way:

QG - (ONEOF (0 1 2 3))
OKAY?

(what qi)
-The value 3 in CELL-614 was computed in this way:

01 + (ONEOF (0 1 2 3))
OKAY?
(what q2)
;The value 0 in CELL-616 was computed in this way:

Q2 +- (ONEOF (0 1 2 3))
OKAY?

(what q3)

;The value 2 in CELL-618 was computed in this way:

03 +- (ONEOF (0 1 2 3))
OKAY?

These explanations are singularly unsatisfying: they imply "I just guessed them." This is partly
true, but fails to take into account the additional constraints imposed and the tremendous computa-

tional effort invested in satisfying them.

'Iis entire example has assumed that the cost of avoiding examining a position by using
nogood sets is less than the cost of just generating the position and checking it. 'Iis may not be the
case for this example with this implementation of the constraint system. I lowever, nogood sets can

save a great deal when the cost of generating and check ing a position is large. 'licy can also save a

t'I.

174 CIIAPTI[R FiVE ASSUMPI IONS

great deal when not all the choices are directly connected to each other. In the N queens problem,

every choice interacts with every other choice. If each choice were to interact with only some other

choices, then nogood sets can climinate many more cases.

5.5. Discussion of the Assumption and Nogood Set Mechanisms

As of the end of Chapter Four, before the assumption inechanisms vwcre introduced, the con-

straint system strove to compute the largest possible set of values that could be both consistently

and determinately asserted. Consistency means that no constraints are violated: determinacy means

that no arbitrary choices on the part of the system are involved-a computed value for a node must
be the case. and no other Nalue will do for that node. Any value that is forced is asserted, and only

those that are forced. Thus the system would conservatively compute a minimal maximal set of

values: let us call this the set of required valties.

Assumption mechanisms allow a constraint network to compute a larger set of values. One

could imagine a constraint system that would autouiatically make assumptions about the values of

nodes when no forced values can be computed for them. Such a system would endeavor to find

consistent values for the greatest possible number of nodes, in some sense. Such a set of values

would perforce contain the set of required values as a subset. Thus we can say that an assumption

mechanism tries to find consistent exiensions of the set of required values.

One difficulty with a general, domain-independent automatic assumption mechanism is that it

may well thrash, perhaps even trying to solve the unsolvable. It is all too easy to set up l)iophantine
equations whose solutions involve extremely large integers that would be infeasible to guess.

The mechanism we have exhibited here is a compromise between a fully automatic assump-

tion mechanism and none at all. The assumption constructs added to the language permit the user

to explicitly advise the system on which extensions to pursue and what values to try. The assume

constnct in effect says, "The extension for which this node has value n may be interesting, if it

is consistent." By connecting several assume cells together, a number of alternative extensions

involving the same node can be suggested, and the system can choose among them. In this way

which nodes to consider for extension are explicitly indicated, and the search space for each node

defineated. The oneof construct adds a little more power by providing a total predicate for the

search possibilities. This gives one the leverage to perform exhaustive case analysis and perform

resolution on nogood sets.

For some purposes it might be useful to separate two properties of the oneo r construct: the

limiting of the value space to a definite finite set, and the advice to try an extension by assuming

one. If there were a construct valuespace for the former property alone, then the effect of

(-- x (oneof '(a b c ...

§ 5.5 Discussion (if the Assumption and Nogood .Set Mechanisms 175

(defprim firstoneof (pin))

(progn 'compile
(push 'firstoneof-rule (ctype-rules firstoneof))
(defprop firstoneof-rule () trigger-names)
(defprop firstoneof-rule (pin) output-names)
(defprop firstoneof-rule firstoneof tentative)
'(firstoneof rule))

(defun firstoneof (valuelist)
(let ((a (gen-constraint firstoneof ())))

(setf (con-name a) (con-id a))
(setf (con-info a) valuelist)
(awaken a)
(the pin a)))

(defprop firstoneof ((pin (firstoneor !))) treeforms)

Conipare this with Table 5-3.

TABiE 5-23. Iniplcincination of the firs toneof Construct.

could be achieved by

(z= x (valuespace '(a b c ...)))
(== x (assume a))
(z- x (assume b))
(= x (assume c))

The latter states that it is an error for x to take on a value not among a. b, c. . and separately that
each of these value may be considered for constructing extensions. 'here might be uses for wanting
to advise the system that only some of the values are useful to try for extensions.

'The notion of val uespace itself can be divided into two parts. One part is triggered when
a new value is computed, and raises a contradiction if the value is not in the set. The other part
is triggered when a value is forgotten, and examines nogood sets to see whether resolution can be
performed. An instance of the first part is built into the gate and equal i ty primitives of'lable
2-7 (page 53) and Table 3-5 (page 79): each has a rule which signals a contradiction if the p pin has
a value other than 0 or 1. However, the rule has no provision for making a deduction by resolution
if both 0 and I arc tried and fail. 'here seems to be no gain in having one part without the other.

The assumption mechanisms given here provide no means for ordering values to be tried,
either locally (at a single node) or globally (among several nodes). 'he oneo f construct, as imple-
mented here, happens to try the values in die order stated. However, the definition of the construct
at the user language level does not guarantee this; the system is free to try values in any order. A
slightly different distinction is that the oneof construct does not guarantee always to assert the

176 CIlAPimr FIVE ASSUMPTIONS

earliest consistent value in the list. When it is asked to assume a new value. it happens (in this

implementation) to scan tie list in order, looking for possibilities. lowcver, if the third value
in the list is consistently asserted, and then a nogood set for some reason forbids the first value

in the list to be consistently asserted, oneof will not notice this. The possibly useful construct

f i rstoneof would notice this, and strive always to assert earlier %,alles in de list if possible.
That is, it would undertake always to construct an extension using the earliest possible value in its
list. As an example, consider two parallel examples using oneof and f i rstoneof. In each case

an adder is created, the a and b pins equated to 1, the c pin equated to an assumption, and then
-the b pin disconnected from its constant.

(create foe adder)
<FOO:ADDER-385>
(== (the a foe) (constant 1))
DONE
(== (the b foo) (constant 1))
DONE
(= (the c foo) (oneof '(0 1 2 3)))
DONE
(what (the c foo))
;The value 2 in CELL-391 was computed in this way:

(THE C FOO) +- (ONEOF (0 1 2 3))
OKAY?
(disconnect (the b foa))
DONE
(what (the c foe))
;The value 2 in CELL-391 was computed in this way:

(THE C FOO) 4- (ONEOF (0 1 2 3))

OKAY?
(what (the b foo))
;The value 1 in CELL-389 was computed in this way:

(THE B FOO) - (- (ONEOF (0 1 2 3)) 1)

OKAY?

The value 2 remains on the c pin-ie oneof cell is happy with .ly of its four values. On the

other hand:

(create bar adder)
(BAR:ADDER-400>
(== (the a bar) (constant 1))
DONE
(= (the b bar) (constant 1))
DONE
(-- (the c #oe) (firstoneof '(0 1 2 3)))
nOw
(what (the c bar))
the value 2 in CELL-406 was computed in this way:

_Agf

§ 5.5 Discussion of the Assumption and Nogood Se lechanisms 177

(defun firstoneof-rule (*me*)

(let ((*rule* 'firstoneof-rule)
(pin-cell (the pin *me.)))

(let ((values (con-info *me*)))

(do-named loop-over-possibilities
((v values (cdr v))

(killers '()))
((null v)
(ctrace "All of the values -S for -S are no good."

values

(cell-goodname pin-cell))
(let ((losers '()))

(dolist (killer killers)

(dolist (x (cdr killer))
(or (eq (car x) (cell-repository pin-cell))

(let ((cell (if (rep-boundp (car x))

(rep-supplier (car x))
(cam" (rep-calls (car x))))))

(or (memq cell losers)
(push cell losers))))))

(process-contradiction losers))
(firstoneof-rule *me*))

(do-named outer-loop
((x (cdr (assoc (car v) (node-nogoods pin-cell)))

(cdr x)))
((null x)

(cond ((node-boundp pin-cell)

(and (not (equal (node-contents pin-cell) (car v)))
(cond ((eq (node-supplier pin-cell) pin-cell)

(retract pin-cell)
(setc pin (car v)))

(t (contradiction pin)))))
(t (setc pin (car v))))

(return-from loop-over-possibilities))

(do-named inner-loop

((c (cdar x) (cdr c)))
((null c)
(push (car x) killers)
(return-from outer-loop))

(and (not (eq (caar c) (cell-repository pin-cell)))
(or (not (rep-boundp (caar c)))

(not (equal (rep-contents (caar c)) (cdar c))))
(return-from inner-loop))))))))

Compare this with'Fable 5-4.

TAIl.IH5-24. The Rule for fi rstoneof.

; (THE C.BAR) 4- (FIRSTONEOF (0 1 2 3))

OKAY?
(disconnect (the b bar))
DONE
(what (the c bar))

;The value 0 in CELL-406 was computed in this way:

; (THE C BAR) - (FIRSTONEOF (0 1 2 3))

178 CIIAPIR FIVE ASSUMPTlIONS

x2

FIGURE 5-11. Cmstraint Network for Making a General Choice.

OKAY?

(what (the b bar))
-The value -1 in CELL-404 was computed in this way:

(THE B BAR) (- (FIRSTONEOF (0 1 2 3)) 1)

OKAY?

When the constant I was removed from (the b bar), the f i rstoneof cell noted that the
value 0 was no longer forbidden, and retracted the value 2 to try the value 0 again, which in fact
worked. Thus f i rstoneof always tries to use the first consistent value in its list. 'lhe code for
f i rs toneof (a trivial modification to that for oneof) appears in Table 5-23 and 'Table 5-24.

One might wish to have a more general oneof mechanism then selection from a set of con-
stants. It would be useful to have a kind of device called, say, choice, with pins named x, aG,
al,..., an (for (n + 1)-way multiplexing); the intent is that x would be connected to exactly one
of the other pins. Observe, however, that this is a special case of an even more general and useful
device, which we might call a multiplexor (by analogy with hardware)or a case (by analogy
with software) device, with pins named x, aO, al an; s must be an integer from 0 to n,
and x is connected to the s'th a pin. lhen by connecting a cell (oneof '(0 1 2 ... n))
to the s pin, we get a choice box. A multiplexor is then easily constructed from equal i ty and
gate devices, and so the general cho ice construction can be simulated as in Figure 5-11. If all
the gate devices are changed to equal i ty devices, then the individual choices are additionally
constrained to be distinct.

I

Part Two

EngineeringI

179

In aequora elucet sol
EFfidgens plurimun:

Qua In axime is tentat ut
Sit mare placidum-

Abu trdum quidem quod hoc fit
Ad noctis niedium.

-Lewis Carroll
,Iliciae per Speculhon Transitus
Translation by Clic |tircourt Carruthers (1966)

Hora coctuLa per proliniatm terenmeles
I.inuagiles lereiani el quoque girirolanl.

Sllnl teetuiscopi macrilli: .mepeque vi'¢i

Edoinipali etam vo.cibms enuditant.

-Lewis Carroll

Aliciae per Speculun, Transitus
Translation by Clic Iarcourt Carruthers (1966)

HOWLAND OWL.: We've got to use the old savv), the knov-how the moxie, the inother-wit,

ars celare ariem!

CIIURCIIY IA FFMMI: You said it!

HOWL AND OWl,: Thank you.

CIIURCIIY I.A Fm.MNI.: [,1sidel I'm behind him as least one hundrdpoor cent.

SEMINOILE SAM: I'm behind him about seven miles... What'd he say?
CIIURC1IY L.A FMI-: Who knows ... ? It was in lafin an' that is recommendation enough fi)r

me.

SEMINOLI. SAM: Wonder what language the Romans used for the old 14 karat bamboozle?

-Walt Kelly
The Pogo Party

Sic oinchct malgno/ia in toarco bunion.

-lRtbe Goldberg

180

Wtih his filibeg fjair filligreed
With finest filbrm.

He fleelly Iboted Jimo an * fro
The igiivrl in the storm.

A flaught qf borealis and a
firkin fine ojiwt

W'as inbricaled on tMe fr-inge
Of' Frelingl i ven *s hat Chapter Six

-Walt Kelly (1952)
I Go P~op

Efficiency

N PRIN\IOUS CI IAPF[RS we have concentrated on developing, in as simple a manner as possible,

tefundamental concepts of a constraint language and mecans of implementing them. The

development has been linear, at cach step we made incremental inmproveme~nts, building on pre-

vious work. In this chapter we will undertake at complete revision of the impliccntittion. A fecw
new uhser features" will he addcd, but the primary emphasis will be on imnplementation tcchniqucs

designcd to enhance thc efficiency of the system.

A sumnmary of tic changes and improvemnts madc in the new version to bc presented in this

chapter:

" Where possible, arrays will be used internally rather than lists. (The assumption is that an array

element can be accessed in constant time by indexing, while accessing a list elenment takcs timne

linear in tie position of'the element in the list.)

* Thie pins of a constraint will be considered to constitute a "frarnic" or "binding contour" (these

words are meant only to invoke certain mental associations). T[he namies of pins in ruleCs will be
"compiled out- and replaced by numeric indices into the frame. T[his allows a rule to access a

pin in constant tine rather than by using the 1 ookup operation on entry to the rule.

" When there is a reason to awaken at devie. in previous versions all the rules of that device

would be awakened. Herie the rules will be categoriz~ed according to pin nulmber, and the

awakening circumnstances categoriized ats "added valtic", "forgotten value", or -nogood set

changed". This will provide a two-dimensional access to a pie-computed buicket of applicable

181

182 CI IAPFR SIX 'I-IIIENCY

rules to be awakened. Such a bucket will be potentially much smaller than the total set of rules

associated with a device.

* l'he control structure of previous systems was based on explicit LISP function calls, with tie
result that the order in which things were done depended ui the order in which procedures of

the implementation invoked others. To reduce this explicit dependence, a task queue control
structure will be used. l'ach task can perform some work, and in the process enqueuc more
tasks. A strong invariant to be enforced is that when a (ask completes anyi queued task may

correctly be perforrmed next. Other strong invariants call be established about the state of tie
constraint network data structures as of the time of choosing the next task to perform.

" Not only rules but also contradictions are treated as tasks to be clueued. This allows us to make
some strong claims about the state of the system when it is contradictory. In pailicular, we
will be able to show that functions such as d i sconnect and what will produce meaningful
results when applied while the network is in a contradictory state. This is easier to show because
the relevant state is made explicit as I ISIP data structures, rather than having part of it implicit in
the internal liSP program state.

" The introduction of the task queue discipline allows certain eaiciency heuristics to be intro-

duced by having multiple queues with various priorities. Certain kinds of rules can be given
high or low priority, for example.

" In the previous versions. a rule could often be run many times because it was awakened for
several different reasons. However, once it has been decided to run a rule for whatever reason,

the computation performed by the rule does not depend (directly) on that reason. In this im-
plementation, a bit will be set when a rule is enqucued for a device, and reset when the Mole is
run: a rule is not enqueued if its bit is already set. In this way between the time a rule is queued
and the time it is run, it will not be enqueued redundantly.

" In this implementation multiple sources of support for the value of a nodve will be recorded.
Also, the history Of Cquatings will be recorded, so that explanations can say which equatings

were involved in a computation. ('This could lead eventually to automatic retraction of equatings
as well as of deiult values, but that will not be done here.) This is all accomplished by retaining
the cell/repository node structure that has been used so far, but moving some of the repository
fields (contents, boundp, rule) into the cells, so that each cell can record its own value.

" At first there were constant cells, and then both constant and default cells. Here we
will introduce a three-level hierarchy of valued cells: constant, default, and parameter.

This will allow certain heuristics to speed up processing of nogood sets.

" Rather than having a variety of idiosyncratic notations for the various algebraic expressions for

a device, a general notation will be introduced for writing any arbitrarily rooted sub-tree of a

constraint network.

" Sonic new user facilities for manipulating the network will he introduced, such a detach and

- '

§ 6.1 The New Improved Language 183

d i sequate, to be explained below.

The situation where the user re-uses a variable name for sonc other purpose (for example,

saying (create foo adder) sonc time after saying (var i able foo)) will be dealt with
explicitly and handled cleanly.

6.1. The New Improved Language

The user interacts with the system by typing a sequence of statements. IAch statement can be
one of these:

P (create conxtrainl-name constraint-t'pe) creates a constraint instance. Thereafter the
global name constraini-natme represents that instance. This also implicitly brings into existence

a collection of %ariables (pins of the constraint) named by using the the construct (described

below).

P (var iable variable-name) declares a global variable.

• (destroy global-name) causes the name global-name no longer to represent anything. If the

name had most recently been a global variable, then that variable no longer exists, and it is as if
al equatings of that variable had never been made. If die name had most recently represented a

constraint instance, then it is as if that instance had never existed, and as if any equatings of its

pins had never been made.

• (~ ==thing-! thing-2) equates two quantities.

S(di sequate thing-I thing-2) makes it as if any equating of Ihing-I to ihing-2 had never
taken place. It doesn't matter whether there actually had previously been such an equating.

• (detach thing) makes it as if any equatings of thing to anything else had never been made.

However, thing itself still exists, so this is not the same as destroying it. Also, a pin of a

constraint can be detached but not destroyed.

• (disconnect thing) makes it as if any equatings of thing had never been made, but also
as if the things that thing had been equated to had all been equated to each other. "hus if a

had previously been equated to b, c, and d, and d had been equated to e and f, then after

(disconnect a) the variable a still exists, not equated to anything; and b, c, and d are all
mutually equated; and d is still equated to e and f, but e and f are not (directly) equated to

b and c.

• (dissolve thing) makes it as if every thing equated to thing, directly or indirectly, had

not been equated to anything. It is like detaching everything equated (directly or indirectly) to

thing.

• (retract thing) causes the source of the value in thing to be forgotten. This is uscfil only

if this source is a default or parameter (see below); it makes it as if the default or

184 CllAPIR SIX |FI ICINCY

pa rame tetr had been disconnected (more or less).

l (change thing integer) causes the source of the value in thing to be changed to integer.
This only works if the source is a defau 1 t or pa ramete r (see below): it makes it as if the

default or parameter had originally had inlegeras its value.

• (disallow thing-I thing-2 ... thing-n) indicates that the combination ofprcrnise values

on which the specified things are based is arbitrarily disallowed. '

• thing makes inquiry as to the value of the thing. The precise nature of te output is not specified

here.

, (why thing) gives local information as to why thing does or does not have a value. The precise

nature of the output is not specified here.

• (why-ul t imate ly thing) gives global information as to why thing (toes or does not have a

value. The precise nature of the output is not specified here.

(what thing) prints part of the network as an algebraic expression in order to explain why

thing does or does not have a value. [he precise nature of the output is not specified here.

The following constructs may be used to represent a thing:

* variable-nane, the name of a declared global variable. The name of a constraint instance may2Lnor be used-it is meaningless for this purpose.2 A variable may not be referred to until it has

been declared by a variable statement.

" (constant integer), which effectively means an anonymous variable with integer as its as-
sociated vahle. It is not permitted to retract a constant variable.

* (default integer), which effecti~ely means an anonymous variable with integer as its as-
sociated value. A default variable is assumed not to change value very often (see the

change statement above), but this affects only efficiency heuristics, not the computational
behavior of the system. The value may be retracted from a de f au l t variable.

* (parameter integer), which effectively means an anonymous variable with integer as its as-
sociated value. A pa rame t e r variable is assumed to be likely to change its value frequently

(see the change statement above), but this affects only efficiency heuristics, not the computa-

tional beha% ior of the system. The value may be retracted from a de f au 1 t variable.

* (assume integer), which is like a parameter variable plus an implicit constraint that

causes the variable to have the value iwtgcr whenever that is consistently possible. If tie value
is retracted, this constraint may cause it to re-appear. If there are contpcting asstmptions (for

SIhis is useful fir finding more than one solution for a network: after one is found. it is diallhwcd to force the
ncxt to be found. This strategy is reminiscent of how uhutipic solutions are gencaled in PROLOG.

2. Supposc that it were lmcaniigfil
19 t'lirsuing this thought leads to Ihc pobsilit) of a mela-circilar constraint

langtiage. one in which constraints thcmschcs arc o ljcts of the languac which can he constiaimed this is not
consdered in this disscenation. but the pissibility is discusscd in the ('onclusions.

Mfift

§ 6.1 The New Improved Language 185

example, either of two assumptions may be asserted but not both at once), the choice of which
to assert is entirely up to the system.

* (oneof inieget-list), which is like a parameter variable plus an implicit constraint that

causcs the variable to have as its value one of the integers in integei-lisi (a contradiction occurs if
this is not possible). If one of the integers in the list is retracted, the implicit constraint requires

another to appear in its place.

f irs toneof inleger-lisi), which is like a oneof variable except that the earliest value in
the list that can consi.iently be the value of the variable must actually be the value of the vari-
able. F'vcn if the variable consistently has i value, it may be retracted by the implicit constraint

and a new value (occurring earlier in the list) substituted.

* (the pin-name cons raint-name), which means the pin pin-.name of the constraint constraint-

namne. The pin-names which may be used by a constraint are determined by the type of the con-
straint used in the create statement which created the constraint. A pin may not be referred
to until its constraint has been declared in a create statement.

The constraint-types provided by the language, with their associated pin names and a short

description of their purpose, are:

adder {a,b,c c = a-+b.

multipl ier la, b, cl c=aXb.

maxer la, b, c} c = max(a,b).

minner {a, b, ci c = min(a,b).

equal ity {p, a, b} p (a = b), where the truth value for p is represented by 0 for
false or I for true.

gate 1p, a, b p =* (a = b).

lesser {a, b) Contradiction unless a < b.

lesser I{p, a. bj p lesser(a,b).

lesser? 1p, a, b} p lesser(a,b).

?lesser {a, b} Contradiction unless a < b. Also, if a is known, then a + 1 is

considered a good guess for b; and if b is known, then b - I is

considered worth trying for a.

?lesserl {p,a,b} p ?lcsser(a,b).

?lesser? 1p, a, bi p ?lesscr(a,b).

?maxer (a, b, c} c - max(a, b). Also, ifa is known and b is not, then a is considered

i good guess firc, and similarly ifb is known and not a.

?minner la, b, c) c = min(a, b). Also, if a is known and b is not, then a is considered

a good guess for c. and similarly ifb is known and not a.

s ignum Is, a) s - signum(a); that is, a is -1, 0, or I according to whether a is

,

186 CIIAPTIER SIX EFFIICIFNCY

negative, zcro, or positive.

When a contradiction occurs, then the user may be asked to specify which of several

defaul t or parameter values to retract. Thc nature of this interaction is not specified here.

"lThis description is not complete, of course, and it speaks of "values" and "contradictions"
without explaining them. It is not a complete description of die language, but only a syntactic
summary with sonic brief indications of semantics.

We would like the following property to be true of the constraint system, however: except
for the ordering considerations explicitly expressed above, the order in which statements are input

to the system makes no difference in the structure of the network constructed, and makes no
difference in the computational results except for the cases where the system is explicitly given free
choice anong alternatives (as with competing assume COnstrucLs). A slightly different property
is that from any input sequence of statements one can derive, using purely syntactic techniques,
a new sequence made up only of variable, create, and == statements whuch produces a
network of the same structure and containing the same computational values (again excepting free
choices of the system). Moreover, all the variable statements can precede all the create state-
ments, which in turn can precede all the == statements. Indeed, within each group the statements

can be arbitrarily re-ordered, for example lexicographically.

6.2. The New Improved Techniques

In this section we examine the techniques and data structures to be used in the implementa-
tion. Actually, not all of them are completely new, but are derived from those used in previous
versions.

6.2.1. Cells Explicitly Record Multiple Support and Equatings

The exact equating specified by the user are to be recorded in a recoverable form. To do
this we record each equating explicitly (as discussed in §2.2.1 and shown in Figure 2-4 (page 42)a.

Moreover, in order to be able to assign reponsibility for propagation to specified eC(tlatings without
creating circular explanations, a propagation path among equated cells is maintained. However,

for speed, this path is computed once when the cells are equatcd, but then not actually used for
propagating. (It's not clear that this really buys any speed in a sequential implementation such as
this, but in a parallel implementation this technique allows for fast broadcasting of a value newly
arrived at a node, without sacrificing the dependency structure of the equatings.) 'lhe assumption
behind this technique is that values change more frequently than equatings are done and undone.

In order that multiple support for values can be recorded, every cell can have its own value.

I.

§ 6.2.1 The New Improved Techniques 187

Cells which are pins of constraints can always record a value provided by a rule of the constraint,

for example. To this -end the contents, boundp, and rule components are removed from the
repository structure and added to each ceil.

A repository is thus now a data structure with five components:

(a) id, a unique symbol used mostly for sorting the nodes and for debugging purposes. '1the LISP

value of the id is the repository.

(b) cells, a list of cells. A repository plus its associated cells make up a node.

(c) supplier, one of the cells. There is always a sqqlier cell. whether or not any cell of the
node has a value. (This is fir purposes similar to the use of an artificial supplier in the

tree- form- trace function ofTable 3-16 (page 98).)

(d) nogoods, a table of buckets of nogood sets, as desribed in §5.3.

(e) conira, the number of cells in the node which have their own values which do not agree with

the value claimed by the supplier. Hence if this is non-zero the node is in a contradictory state.

A cell has ten components:

(a) id, a unique symbol used mostly for debugging purposes. The I.IS, value of the id is the cell.

(b) repository, the repository of the cell. The cell must be on the repository's cells list.

(c) mark, used for graph-marking algorithms. .

(d) owner, which is either a constraint (in which case the cell is a pin of the constraint), or () , in
which case this may be a global, constant, default, or parameter cell.

(e) name. If the owner is a constraint, then this is an integer (not a symbol as before), an index

into the table of pins for the constraint's type. For a global cell, this is the I ISP symbol which

is the name of the cell, the value of the IoISP symbol is the cell. For constant cells this is the
symbol constant, and for default and parameter cells this is a generated name used

for debugging.

(f) staie, which describes whether and how the cell has a value (see below).

(g) contents, usually the value (if any) of the cell, but see below.

(h) rule, the rule by which the value was computed if the cell indeed has a value, or () if the cell

has no value. There are three artificial rules called *constant-rule., *default-rule.,

and .parameter-rule*, used to distinguish constant, default, and parameters
cells respecdvely.

(i) equivs, a list of other cells of the node (members of the cells list of this cell's repository)

to which this cell has been explicitly equated by a == stalemnt. Ixception: if one says

(== x x) (which is perfectly legal and meaningful, if of doubtful utility), then x will not

appear on its own equivs list.

(j) link. one of the cells in tie equivs list, or () . The link components of the cells of a node

describe a valid propagation pattern within the node along explicit connections.

"J I "" "I
'

-
'

.
''

. '.. . ".

188 CI IANTAI~ SIX 11[ICIENCY

BRREP-NOGOODS 0
NLREP-CONTRA 0

@SLAVE__ REP-CELLS II

FALSE

FIu u ~i I.ii trii i e iri CELL-69 iiN) ~i ic

§ 6.2.1 The~ Notw Impruval Techniques 189

CELL-2 CELL-43RP-1

CELLR RE POSITORS

CELL-OWNERS

~~~~~~~CELL-NAE69(UE-3 ik

FtuH~ -? D~L Srict,, f <r1ADc ih oniredV8Itc

CEL1) C L-4 EL1
CELL-RE OSITOR 43



AD-A09 5.56 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC F/G 9/2
THE DEFINITION AND IMPLEMENTATION OF A COMPUTER PROGRAMMING LAN--ETC(U)
AUG 80 G L STEELE N0001-80-C-0505

UNCLASSIFIED Al-TR-595 NLEEEEEEEEEEEE*bmuiu4ii0000 u
IlIII~hEEE~lI
IIEEEEEEIIIEEE
EIIEIIIEIIEEI
IEEEIIIEEEEEEE
II///I/////EEE



190 CI IAVI FR SIX

CEELL 27 REP-10 REP- 12

REP-SUPPLIER

REP-MARK FALSE

13AR REP-NOGOODS

NIL REP-CONTRA 1 Contradiction!

@SLAVE REP-CELLS

FALSE

10

CELL-69

<ADDER-68>
CELL-11) CELL-43 0 CELL-11

CELL-REPOSITORY 43
CELL-OWNER @KING <GATE-9>T

CELL-NAME FOO <RULE-73> 2

CELL-CONTENTS NIL FALSE 65536

CELL-STATE @SLAVE 10 @REBEL

CELL-RULE 10 <RULE-15>

CELL-MARK FALSE FALSE

CELL-LINK

CELL-EOUIVS 
T

FiGURi:6-3. Data Structure for I Node in a Contradictory State.



§ 6.2.1 The New Improved Techniques 191

Tlie old houndp component of repositories in the old scheme of things has been replaced
by a state component. in cells. The boundp component had two states: -%alue" or "no value".

The state component has six states, and encodes whether a cell has a ahle and also documents'

to some extent the cell's relationship to other cells. The infoirmation in tie state component is
partly redundant, as it encodes information obtainable from other cell components or components ,

of other cells in the node. This redundancy sometimes enhances speed, and sometimes just permits
some error checks. In any case, I believe that recording the six states explicitly aids visualization of
what's going on. The six states have symbolic names: as a point of convention symbolic names here
will begin with "".

(1) @k i ng. This cell has a value (in its contents component), and is the supplier for the node. 'llhc
nile component of the cell indicates how the value was derived.

(2) @puppet. This cell has no value, but was arbitrarily chosen as the supplier for the node be-
cause no other cell of the node has a value either. (Every node has a supplier, and [he supplier

must be either a king or a puppet.) lhe contents and rule components are ().
(3) @s 1 a ve. This cell has no value of its own. It takes on the value (if any) of the node's supplier:

thus if the node's supplier is a king, then all slave cells inherit values. (If the node's supplier is a
puppet, then all tie other cells must be slaves, and have no values, inherited or othervisc.) The

contents and rule components are ( ).

(4) @f r iend. '[his cell is not the node's supplier, but it hits its own value, and it is the same value

as that of the supplier. The contents and rule component are as for a king.

(5) @rebe 1. 'Iis cell is not the node's supplier, but it has its own value, and it is not the same

value as that of the supplier (hence the node is in a contradictory state). The contents and rule

component are as for a king. (The contra component of a repository is simply the number of

rebel cells in the node. 'lliere is no special way to indicate that two rebels have the same value.)

(6) @dupe. This cell is in effect a slave to a rebel. It has no Nalue of its own, but agrees with a

rebel rather than with the supplier. (This situation arises only as a result of applying == to

two nodes with differing values: one node is chosen arbitrarily to have its king and friends

changed to rebels, and its slaves to dupes of the former king. The node can then be queued for

contradiction processing later. )upes tend to disappear over time.) The rule component is ().

but the contents component is the rebel cell of which this cell is the dupe.

'[llus kings, friends, and rebels have their own values- puppets, slaves, and dupes do not. Kings and

puppets are suppliers; Friends and slaves agree with suppliers; rebels and dupes oppose suppliers

(necessarily kings). 'The cases of being a slave to a king and a slave to a puppet are purposely not

distinguished in the state. 'Iis means that on encountering a slave one must check the supplier: but

then again when a puppet becomes a king it is not necessary to change the states of all cells in the

node. 'bis speeds ip tie "good" cases of propagation without contradiction.

'he link components of a node form a spanning tree for the node. '1lie supplier of the node

" ______|



192 CIIAPITR Six 1i I ICIFNCY

must have ( ) for its link, and all others must point to some other ccll of the nodc. Consider the
graph of explicit == connections. Then die links fIorm a subgrplh which is a strict tree. Moreover,

the links indicate a direction for the edges (if cell x's link is cell y. then the edge between x and y
is indicated and directed it from x to y). Considering these directions. then the tree is rooted at the
supplier and from any leaf following edges in the indicated direction %ill lead to the supplier. Ibis
property is useful for determining which equatings were responsible for a cell's getting a value.

(tlowe er, the %alue Ibr a dupe or slave can be found quickly just b% looking at the contents of
the supplier of the repositor of the cell, rather than ha\ ing to follow an indelinite number of link
edges.)

As an example, Figure 6-1 shows a node of four cells, of %hich two are global variables and
two are pins. None have values, so one of the pins has been al bitraril) chosen to be the puppet.
Four equatings were done- the last (between the two %ariables) being redundant. Note that the link
components converge on the puppet, which has a null link. (The figure does not show the pointers
between the structures and the I isl' symbhols whose altIes are the structures: instead, the name of

the I ISP symbol is written.)

Figure 6-2 shows tle same node after the adder has computed de value 43 for its pin, and
then later the gate also computes the \alue 43. Because the adder happened to compute its value
first, it was made king. This entailed rearranging the links (actually only one) to converge oil the

king, this is noted in the figure. When the gate then computed a value, its pin became a friend of
the king. Note that the rule components of the pins now contain rules.

In Figure 6-3 the gate has retracted tle value 43 for its pin (presumably because some premise
was changed) and instead asserted the value 65536. This makes the gate's pin a rebel. The links
need not change. but the state of the gate's pin changes to @rebel. Note that one slave's link

actually points to the rebel- this does not make it a dupe, however-it still inherits the king's value.
'lle point is to do the niniun work necessary- there inight actually be no equatings allowing a
path from slave to king without going through a rebel, and yet when a rebel appears we would not

want such slaves to become dupes because that would entail retracting the old value from the new
dupes and their consequences and re-propagating de rebel's value-and we should be reltuctant to
do that because, after all, it is not clear whether the rebel's value is "correct": it may well soon

disappear.

6.2.2. Constraints Use krrays Indexed by Pin Number

The previous implementations oif constraint-types, constraints, and rules used lists of things

that took time to access. In p:irticular, when at rule was invoked it was necessary to tse I ookup to

find the pin-cells: a rule which used all the cells would take tine quadratic in the number of pins to

do this. Of course, this wasn't so bad since the particular constraint-tpcs pro\ ided had only a few

| ,.



§ 6.2.2 F/i New~ hiiirovedl I'CchIUues 193

pins. but we ould like not to preclude tile imlpkcHIttilOn Ot'COnStraiit-typcs 'A ith mlanly pinIs.

Here we will usc records (defined types) and arrays for collections oif things w hich mutst be
ranitdom-accessed, and lists for things that mutst he traversed linearly an.w ay. We will mnake rule
be a new datit type for representing ruics-property lists arc nlice for fast protot~ ping. butt not
nccssarily for fast execultionl.

In the ncw implementation it constraint-type will he at datat structure with six comnponents:

(at) nijane, a I sip symbol "hioch is dlie inme of thc constraint-ty pe. Flc I isip valuic of tilc symbol is
the constraint-type structure.

(b) i'ars. anl array of distinct symbols. TIhese are the namies of thc pins. TIhe array is t.ero-origin: the

indiccs for an array of length ti are the integers froin 0 to n -- 1. inchmsivc. I'he position in this
array of a pin-namie is tile number for that put-namne: thus m e may speak ofipin-1nmbers.

(c) wi'nbol, a i isi' symibol uised to represent conistraints of [his typc in algebraic expressions.
Sometimecs, but not always, this is die same ats thle niame.

(d) added-rules, anl array indexed by pin-numnber. Elemencrt j is at bucket (at list) of rules having
pin j as a trigger. [hus, when pinl j's node receives a new value, exactly these rules should be
awakened.

(e) fiffgel-rules. anl array indexed by pin-numnber. Elemient j is a bucket of rulcs having pin j as an

Output Pill. When at value is forgotten for pin j. exactly these rules Should be awakened.

(1) nigood-i-u/es. an array indexed by El-nm er.lmnent j is at bucket of ruics having pin j as
ain output pin and which mnight formierly have been presened from asserting a value for tie
pin because of at nogood set. When the statuis of a nogood set involving thle node containing pin

j. exactly these rules should be awakened.

A constraint has five comnponents:

(at) naine, the global name of tile constraint. 'lhe i isir value of the namec is the constraint. (I'le id
component has been eliminated, as steps are takeni in this imiplementation to ensure that the
global namei Uniquely identifies thie constraint.)

(b) ctype, the constraint-type ofwhich this constraint is an instance.

(c) values, ail array indexed by pin-numiber. *[his array is of the same length as tlie v'ars array of the

clYpe. Flemnent j is a cell, pill j of this inistanice of thle constraint-type. '[he owner of pinl j of a
constraint is the constraint. and the iiame of pip) j is the integerj.

(d) infi., a slot tused by certain constraint types to associate instancc-specifio inlorniation with each

instalne.

(c) queued-rules, an integer, initially 0. Thbis is uised ill conjunction with die id-bit comnponenit of

rules (see below).

A rule has six components:

(at) code, a I 151' symbol which -serves ats both) thc namec of the rule stutre itself (f1or debugging



194 Ci IAI F R SIX IIIi~U

CTY PE NOGOOD- RULES

RULE.TRIGGES

MBL GA~6-.Thc(n~~jtIp aeddisRi

puiPEad-SYM)O Gh Am fThc s ucinwihinkcnsterl rkn dat

Of hcfac tat os ir sstmsinluinglip Mchnel iixallw nmctbcud

sinutnctsl s arabcnacan fntin ae ihotcofic)



§ 6.2.3 The New linprovd Techniques 195

(b) czype.the constraint-type with which the rule is associated.

(c) triggers, a list of pin:numbers oif die pins which are the triggers for this rule.

(d) outvar, the pin-number of the single pin for m hich this rule computes a value: or (), indicating

dat the ide never computes a value for a pin.

(e) bis, an integer used to encode some flag bits. These flags are integers which are powers of two

(set) or /ero (clear). and bits is the suml1 of the flag valcs. (Of course, the name is suggestive

of the fact that a two's-complement representation of the integers is being taken advantage

of.) lhe tAo flags encoded here are called @nogood and @nogoodbeg. If either is set. then

it is possible for a nogood set it) prevent the rule from asserting a value: Such rules should

appear in buckets of the nogood-rules array of the ci/pe. [he @nogoodbeg hit differs from

the @nogood hit in that it is very meek. and will not prt 'e a alue for i, node if the node

has a conflicting Nalue: a simple @nogood rule is willing to assert its value boldly and cause

a contradiction. Therefore @nogoodbeg rtiles are not invoked unless tho oulpt pin has no

value (and so must beg for a value).

(1) id-bi. an integer which is a power of two. All the rules associated with a given constraint-type

have distinct id-bit components. This bit is used to identify whether a rule has been queued

for processing but not yet processed. When a rule is about to be awakened on a constraint, the

queued-rules component of die constraint is checked; if die rule's id-bit is set in the queued-

rules., then the rule need not he queued now because that would be redundant. Otherwise,

die rle/constraint pair is queued and bit set in the queued-rles component of die constraint.

When a riule/constraint pair is dequcued, the bit is reset in the queued-rules component. This

technique keeps the queues from being bloated and the system fioii wastefily running the

same rule many times.

The reader may have noted that previously rules could in principle setc more than one pini, but

here die definition of the outvar component implies that a rule may set at most one pin. This

will make it easier to move some of the rule machinery out of die individual rules into a common

processing routine.

Figure 6-4 shows the data structures for the constraint-type ga te, whose new definition is:

(defprim gate (p a b)
((p) (if (or (= p 0) (= p 1)) @dismiss flose))

((p &nogoodbeg) () (resolve-among '(0 1)))

(p (a b) (if (= a b) @dismiss 0))
(b (p a) (if (= p 1) a @dismiss))
(a (p b) (if (= p 1) b @dismiss)))

'li7e first -tle has no output pin: die second has output pili p, no input pins, and should have the

@nogoodbeg bit set. This definition format will be discussed more thoroughly below.



196 CHAPTER SIX I.IiI.NCY

6.2.3. (onstants Are Considered an Ilnutale Part or the Wiring

In this implementation it is not permitted to retract a constant. (i Chapter Four it was men-

tioned that the ability to retract constants is easy to provide, and so one might as A ell. I Icre there
are two counterarguments, one theoretical and one praggmatic-take your pick! (I) One ought to

have a way of wiring essential constants into the network and have them considered part of the
network structure, on a par with = = connections, rather tian alterable parameters. (2) If constants
are immutable, they can be shared. We will use a hash table to record gencrated constant cells so

thiat if "(constant 43)is typed many times only one constant cell is generated.

It is still useful to have tmo kinds of retractable valued cells, and so A e call these types
de rau 1 t and parame ter cells. In Chapter Four, the distinction was drawn to guide a heuristic
about which cells should be preferred for retraction. I lere. the distinction Aill instead guide a
heuristic about the tbrnation of nogood sets.

6.2.4. A Queue- ilased (ontrol Structure Aids ffliciency Ilcuristics

In this implenetation there are seven queues, a rather arbitrary mmber, to be sure. They
are arranged in a simple priority order as an ciliciency heuristic: but again. I emphasie that a fun-
daniental principle of the system is that when the time comes to dequetie a task. a r tasO rroni any,
queue may be validly choscn artd executed: the ordering of the queues and the ordering within a
queue affects only speed and choices explicitly reserxed to the whim of the system by the language.
The queues, in order from highest to lowest priority, are:

(1) * con t ra- queue*: Outstanding contradictions to be processed. Contradiction entries are of
three kinds. A @node contradiction indicates that a node is in a cotradictory state (has at
least one rebel). A @con st ra in t contradiction indicates that a rule explicitly signalled a
contradiction. A @resolut ion contradiction indicates that it new nogood set Aas derived
by resolving old nogood sets. (Note thait these situations obtAined at the time the entry was

queued. By the time the entry is dequeted for processing the situation tna have already been
solhed. This is legitimate and must be accounted for. If the network contains a contradiction,
then there must be an en'ty for it on the queue: hut not vice versa.)

Contradictions are given highest priority because there is (probabI ) no point in compoting

new valtes froim inconsistent ii lormation. I lowever, see the descriptions of * (e for- qu nue*
and *punt-queue* below.

(2) *detector-queue*: Rules which have no output pin. Such rules are called "detectors"
because all they cam do is detect contradictions- they comptte no \alues. I'acIi qleure item is a
pair of at rule and a constraint to apply the rule to.

I)etector rules are given higher priorily than ordinary rules because i" on the one hand there is
no contradiction, the rule might as well be run now rather than later: while if ol the other hand

I



§ 6.2.5 ih('Neiv Improve'd Teclmiques 197

there is it contradiction, we would likc it to be detected as quiickls as possible. (Ib'is idea, and
Somei other ideas about the ordering of the queuecs. is taken hrorn JStaillian 19771.)

(3) * van i 11 a-queue.*: Ordinary (plain sanilla-flisor) rulcs.

(4) *nogood-queue*: Rules with the ftogood or @nogoodbeg hit set. Such rules arc Iikely

to make assumptions. and so are accordcd lower priority than % aIilla rules, w hich ire likely to
be certain of their calculations.

(5) *def er-queue*: Contradictions which have beent deferred until rules base been processed.K

When a contradiction occurs, the iser has the opt ion of choosing a premise to ret ract. orj
requnesting that the ct n rid icut itp rocessinug be "deferred" ( pot tponed i il rule cornpittat ions
have been done) or -punted' (postponed indefinitely).

[he reason For the del'erral niechanism is that sometimes it is necessary to make two or mnorc
changes to the systemi at once--for example. to alter ses eral p.tramieers. IThe alterations
together make the network cotnsistent, but if done sequentiAly lea~ e the network temporarily
itnconsistent. It ma be decsirable to postponie contradictions until all the chaniges hase been
made, whereupon many % ill be discovered to be "false alarms"

(6) * rebel1 -queue*: Rules some of %khose triggers were rebels or duipes at the time of qtueuing.
Fniries are triples of nile. constraint, and the reason For awakening (needed for- re-qlueuing tie
rule into one of the higher-priority nie qileties).

IThe ratiotnale here is that there is no point in computing %aloes from contradictory in formation.
When all outstanding contradictioits base been processed (from either *cont ra- queue.
or *de fer-queue*). then there can be no more rebels. and rules are mnoved from
* rebel -queue* to the other rule queues.

(7) * Punt -queue.: Contradictittns which base beeni postponied indefinitch [he user may be
asked occatsionall% whether ito process these. but theo are not processed wi hout explicit ap-
pros al. (Of cotirse, if they are niot processed thenr the nel-k ork Ina.% retmin in at cont radictory

state.)

6.2.5. (Generali/ed Algebraic Notmiomi Can lFxpress .\ny Netisork

Thle (Ise of' special notaition tor i the different "poin (if % iew of a const r~ii it are eliinnated.
Insteaid tf has ing -+- to represent addition and -"to eypress its iii erse: instead of uising "log"

and the radical sign to express in erses of cx ponen iiat it ii instead of' ha% in g to ins eit silly nainles
like "arcnmax". we will tuse at sinigle s~nibol Imr each constraint type, and represent inserscs by a
special device.

A constra, int can be notaed by writing down th(le nairie of ts typle and A Imt its piuis are con-
nected to. Rther than writing these pieces (of in ftrmation separately. in algebraic notations we
rise a fp sit itonl ci n sen titn, WhIiich is that the pins ar ioirde red .ind assigned to posi tins spatially



198 CitArtIFR SIX l1:lICIi;NCY

relative to the position of die name of thle constraint type. !1n 1ORIRAN, for example, the position

to the left and right of I "+" are assigned to two pins: writing a variable in suich it position means

that dhe %ariables are connected to the pins: x+y means that x is connected to tie first pin of the

instance of +, and y to the second pin. (Now in I-OR I RAN thle + device can only compute in one

direction-it is not it constraint-but tilc usc of the word "pins" is meant to be suggestive.) In l isp

the name is preceded hy -(- and successive positions to the right are connccted to successive pins,

w ith the last followed by at ")". Int both languages another piositional consention holds that the

expro'ssion itself represents one pinl: wherever that expression is written, thle extra pin is connected

to the pin for that location. In t~~RXNone writes a *b+c : parsing ruiles spccif that this is

equisalent ito ( a * b ) +c. Now the two input pins of * are connected to two sariabics a and b, and

the resuilt pinl ito the first input of +, becatuc thie * expression was written in thle position for thle

first input pin) of +. (All of these observations appear in [Steele 19791.)
I [ere Ase will allow at constraint to be notated in a manner similar to ait I 51' expression.

I lowever. we will not distinguish one pin as thle "ouliput" pin, thie onle ito be connected to thle

position Ahere the expression is written. Instead, we have a device to specify which pinl serves
that purpose. We notate at constraint as thle name of thle constraint-type followed by expressions to

connect to till the pins. I lowever, one expression can he replaced by thie symbol %, which indicates

that that pin is the on-, that goes "out the top" to conne~ct to tie Containing expression's operator.-

F-or example, if the pins of the + constraint ate called c. a. and b inl that order, theni we can

write y - x ats (+ y % x) or as (+ y x %4). in the first case. y is connected to thie c pin, x -

to thie b pin, and thle a pinl represents the resuilt. The expression a - arcmax,(c -4 d/e) canl be

writtenas(+ a % (max b % ( % c (* d %e))

Notc that this ntolational convention makes the order of the pin-namies in a def p r in decla-

raion important.

As at convenient convention, if the fitn pin in an expression is to be at %, then the % mnay be

elided. 'ilierefore the expression (+ % x y) may be written ats simply (+ x y). This allows

non-inverse forils of failar algebraic operators to be written in their uIsual I tsr form.

6.2.6. IThe Size of Nogood Sets Can be I keurisfically Reduced

When at contradiction is discovered, either because some rule of at constraint detected it or

hecause two distinct valuies collided at at node, then contradiction processing locates the premnises

3 Other luitors have someitimes done something similar to this ior examnplc. it allows it fuinctioiat niotation ror
relations in pietlicate logic, and oiic ror examnple defines I?(SluI. T11/. cj) it) he an :ihhrcs ation for Jr 31/ (S(a, xr) A
Tfb. v, tu) A /?(.r. yi)), %here /?, S and ) arc relatioins I lime iirpiisch allowed clision oF the *h'rs arguinit rather
than the last. Suipposie the relation suhset(n, bi) nicans that n is a siihsel of 1) Ir the last aiguinentt is elided, then
suhset(ei) means 'that Y of which a is a subset,. rather than "a subset of n- which is thc meaning if the first
argument is elided. Similarly, one would like lcssthian(.i) to nican "something less than Cr. not "somiething which r
is less% (han".



§ 6.2.6 Thi, Ne,' Improved Techniques 199

0

W

PO

DO D1 D2

D3 D4 D5 CO

FicURI:6-5. Stina i/Iig t['/ttlt (Mis ill the Nct ork.

of the conflict. These premises collectively form a nogood set, as discussed in §5.2.1. Nogood sets
can be very large and require a great deal of time to search when checking assumptions. I lere three
techniques are outlined for reducing the size of nogood sets, all based on distinctions among valued

cells.
thMe first technique is simply to exclude constant cells from nogood sets. '[7hey are now to

be regarded as a fixed part of the network structure, as permanent as = connections, and never to
be automatically retracted (indeed, the only way to "retract" a constant now is to disconnect it). In
the example of the four queens problem in 5.4.2. nogood sets were often formed containing one or
two assumptions and half a dozen constants that were regarded as fixed. Ivery 6ime a nogood set
was checked to see whether it excluded a value, each constant of the set would be checked to ensure
that it was still constant! Excluding constants from the nogood sets eliminates this overhead.

'[he second technique is to order the elements of the nogood set according to the expected
frequency of change. Parameter cells by definition are assumed to be more variable than default
cells, so if parameter cells are put at the froint of nogood sets where they will be checked first, we
might expect to be able to terminate check loops more quickly.

The third technique involves using the network to summarize a collection of default cells
(which, again, are assumed not to changt frequently). Consider the schematic diagram in Figure 6-
5. The three values V. W, and P2 caused a contradiction at Q. The %alue V was conputed from
DO, Dl, and D2: W from P0 and Y; and so on. The ntdes Pj and Dj represent parameters and
defaults, respectively; CO is a constant, and AO is an assumption. The leaves of the tree are the
premises of the contradiction at Q



200 CH AP TR SIX Fl I 1.lNC.y

Now in thle Pre% iouIS versions ol thc constraint system, the leavecs would all go into the nogood
Sct. By dhe first rchnI~iqueC listed above C nefowv omit thle constant CO Fronm thle nogood sct.
Suppose. however, that %%c e re to pt nodes other than premises into nogood sets" [his is per-
feet]i eaningful. For the situation of igure 6-5. %%e might mtake up a nogood set containing V, W,
and AO. 'I'llis wou ld record die fact that tie % al tes t those thlree nodes arcI- contirad ictoi H owever,
this is not Nery uISCI ul-01th constraint combining them at Q determined that in One step anyway.
and the piirposc of nogood sets is ito sumlmarizse global, not local, infor mation. Anmother possible
nogood Set %OUld hle V, P0. P 1. X, Z. and AO.

T he question is. which nogood sets are usefl" IIn this imiplenientation. nogood sets are
checked unlv by rules which produce assuimptions (i.e.. &nogood and &nogoodbeg riles). and
by tie change statemlent. 4 1 her~eforeC. nogood sets niu1st contain assumnpltions or cells likely ito
lbe changed (which by definition are parameters but no0t defatlltS) to be tiseftil (th is is "h y in pre-
%ious versions process-contrad ict ion did riot record nogood sets unless anl assumlptionl w&as
involved). aInd then fOr speed otught to contai it s few other cells as possible.

T Ihere are many wayvs a nogtn d set (or man v nogt o d sets) coultd he chosen fo r at contradict(ion.
The heuristic mnethod used here is that it' any cell in the depicudency tree is supported only by
defauflt cells (and constant cells, but they don't count an ~a .then that cell may be used in the
nogood set in lieuI of the default cells. pro% ided there are more than one (that is, thie sumrmarization
is Used otil if it strictly decreaSes the si/'e of the ixogood set). *\ssumni1S and parameter cells
mutst be explicitly immClUded in nogood sets. Thbus for Figure 6-5 the nogood set actually chosen
wouild be V (sumarrii/.ing 00. D1, and D2). PM P1, Y (stmmimariiing H~and 04I), arid D5 (which
could be summrarized by Z but is not bcauIse it wouldn't decrease the size of the nogood set).

6.2.7. Statistics Counters Mecasure Pecrformanmce

Ibis version of the constraint system is instrumented with a system of statistics counters (a
generally useliml package of I ISr functions in its own right). 'Ihis 'A ill allo%% uIS to Count1 suchI events
as number Of rules queuLed, nlumber of cells generated, and so on.

4 In principle. (in ' vcomputecd requl could bic ecked nmrainsl cxistiiig ingood sets in process -setc. anid pcrhilAp
this woiuld he a goiod thinig: hut I dccnicd rthis an uon icess r% comnplication %%it h unclear benelirs.



§ 6.3 11n, Aiv lnmi ed hpllciio 201

::Values of the S IA II component of a C1III.
(defconst @king (list '@king)) ;has value, is supplier
(defcoist @puppet (list '(apuppet)) :no value, is supplier
( defconst @fr iend (1 is t I'@fr iond) ;has Value, belileves suppl ier
(defconSt. Oslave ( list :@slave)) ;no valu te, bel loives supp Iier
(defconst Rrehel (list '@rebel)) ;has value. opposes supplier
(defconst @dupe (list '@idupe)) ;no value, believes a rebel

:; Bits which can be set in the RUI [ -tIllS component of a IlUI[r
(defconst. @rule-nogood 1)
(defcoiist @rule-nuogoodbeg 2)

Valu tes returned by the COli funCtion Of ta RUtF
(defconst @lose (list 'l4lose)) ;contradiction detected
(defconst @dismiiss (list '@disiniss)) ;no value computed

Special flags returned by CIIOOSI -CUt PRII.
(dercoiist @defer (list '@defer) ) ;contradict ion should be deferred

ldefconst @puelt (list 'topunt )) ;contradict ion shoiilId be punted

Il easons ro r enilueu ing a IlUIE .
(defconsl @added (list '@added)) ;a trigger received a new value
(defconst. @forget (list '@forqet) the ottvar is beggineg for a value
(ilefconst @nogood (list '@nogood)) ;a nogood fur the outvar was flushed

Reasons for contradictions in entries of *CONIIA-QU[(JE* and friends.
(defconst @node (list '@~node)) ;the node conta ins a rebel
(defconst @constraint (list. '@constraint)) ;a constraint rule detected it -

(defconst @resoliioi (list '@resolution)) ;resolut ion on nogood sets

6.3. The New Improved Implementation

Ii thts sctitonlfthe entire sourcle code fot tlie tlC\w yslell i P, p-l llet, Coll) leill tt jself.

6.3.1. Symbi~c oiats IProside imelts for Itemlt Maiker V'alues

Ciil\lliiill.SIs lit ii-elltliS nfci t olll;itt Sitll sill.~lc Ilalistitiit[ig , it '@'. Sonicle

of, tite eillsdtlitS MVe SpeCial flIllCI iC ame11S. ~1)(115 otiic j list I 1t objects Mshose Ilal111Cttesnt

partl tIa I Ilatte t as lonitg as the% al- rfei ig tti /ahk di Ast Ilect ht 1111 all it he o bjects. Iou this po tpose
at rreshi', Conlsed list (i [lie lalle of, tite Coillst~it iN utsed. 1his llikc5 the Cool~l'it leCoglli/ahie

whlen it is pritnted: tile ftesh coilsitlg1 ellstlles tilllitItlllless. I )elnitiiins of symolilic Conlstats used



202 CIIAPIR SIX El :ICIIACY

in the constraint system appear in [able 6-1. lbc names @k log. @puppet, @friend. @s lave,
@rebel, and @dupe are used to mark the suite of a cell, for instanlce. 'licsc constants are thus
clffcti'.cly the elements Of PASCAl -style enumerated data types;



§ 6.3.2 rlu'.c it ImpI/ro)ved Impiphnciiaion 203

(defvar *all-statistics-counterso ~

(detmacro statistics-counter (namne description)
(let ((varname (symibolconc "*" name -IISCSOUTR")

-(progn 'compile

(or (assq ',varname *aln-statistics-counterss)
(push 1(,varname ,description) .all-statiStics-counterse))

(dervar ,varname 0))))

(definacro statistic (namne)
(i nc remen t ,(symnbolconc "*" name "-SIAIISICS-COUNTER.")))

(derun stats (
(dolist (x (reverse .all-statistics-counters*))

(formiat t "-%;-7D =A- (syfneval (car x)) (cadr x))))

(defun reset-stats (
(dolist (x *all-statistics-counters*) (set (car x) 0)))

TA 11 1: 0-2. Statistics Couiiicr Mechanism.

6.3.2. Statistics Counters Miake It E~asy to Instrument Code

T able 6-2 defines a simnple statistics-gathcning mie-Aanismn. 'lhc declaration

(statistics-counter foo "Globbitzes frobbotzed while nurbling the scrol")

creates at statistics counter named too. Thei string is it description of the meaning of thc cotrnter.
[his has [lie effect of defining at global variablc named *f oo- stat i st 1 C c-Counte r*. initializ.-

ing it to zero, and adding it to a list of all declared statistics counters. One canl inscrt into a piece of

code the statement

(statistic foo)

which will cause thc count in counter roo to he incremientcd. T[he function stats will print all

thc stittistics, oniC per line, in thc format:

2960 =Globbitzes frobbotzed while nurbling the scrol
45613 = Queued rules with no output pin

The function reset-stats resets all] the counters to zero.

In the code to fiollow .here will be many call on the statistic macro. like calls to

ct race aiid requi re - lype, the% call be ignored for purposes of undi~erstanidinig thecoluiptitaitioni.



204 CIIAP I R SIX11 1l [l1N(Y

(deftype constraint-type
(ctype-nane ctype-vars ctype-added- rules ctype-forget-rules
ctype-nogood- rules ctype-symbol)
(format stream "(Constraint-type -S)" (ctype-name constraint-type)))

(deftype constraint (con-name con-ctyPe LUn-values con-into (con-qlueued-rules 0))
(format stream "(-S:-S>

(con-name constraint) (ctype-name (con-ctype constraint))))

(deftype rule ((rule-triggers '()) (rule-outvar ()) rule-code
(rule-bits 0) (rule-ctype ()) rule-id-bit)

(format stream
"< -4.- L [(S@[-- MUMOOI 1- (Of* &N0GOODlG-)),--S--2- I-]

(rule-outvar rule)
(zerop (rule-bits rule))
(and (rule-ctype rule)

(rule-out'var rule)
(aref (ctype-vars (rule-ctype rule)) (rule-outvar rule)))

(bit-test @rule-nogood (rule-bits rule))
(bit-test l@rule-nogoodbeg (rule-bits rule))
(rule-code rule)
(and (rule-ctype rule)

(forli st (tr (rule-triggers rule))
(aref (ctype-vars (rule-ctype rule)) tr)))))

'TAI r 0-3. Damta Strimurcs fomr ('onolramiml-t lies. (nsrainls. anid Ruiles.

6.3.3. Rules Are Da)~ta Structure's andi (:talOgid in Arrays

'Iable 6-3 sho %s the deffiitionsof thle data ,tlu~res describeCd in §6.2.2. An addition a Ifeature

of inter-est is the nlew printinlg fornilatS fior constraints anld rides. A Constrainlt is now uniquely

namced by a global variables, and so its id is not prinlted. Ilistcad it just print~s ats the narfll and its

type:

(create Too adder)
(FOO: ADDER)

T'he format for primlinlg rulles is in tCndcd 10 -,,fow tllc functionlal dependence of (lhe r-tle by

u~sing thle otilvar and trigger il ornlatioll. The Fk~e rudes For gate wichl were de~fined in §6.2.2
prinlt in this way:

<A.GATE -RULE -15( P ,B) >
<84-GATE -RUE -16( P A)>
(P.-GATE-RULE-17(A,B)>
((P &NOGOODDG)GAE-RULE-18()>
<GATE-RULE-19(P))



§ 6.3.3 The New Improved I mpteenuallon 20

Rules 15, 16, and 17 are vanilla-flavor rules: rule 18 has tie @nogoodbeg bit set and has no
triggers; and rule 19 has no output pin, and so is a dcteccor rule.



206 CIllIAI\"Fl SIX FITl.ICIFNCY

(deftype repository ((rep-cells () (rep-supplior () rep-id
(rep-nogoods '()) (rep-contra 0))

(format stream "<Repository-@[ for {~St,-}]>"

(cell-ids repository)))

(defmacro node-cells (cell) ,(rep-cells (cell-repository ,cell)))

(defmacro node-supplier (cell) *(rep-supplier (cell-repository ,cell)))

(defmacro node-mark (cell) "(cell-mark (node-supplier ,cell)))

(defmacro node-nogoods (cell) *(rep-nogoods (cell-repository ,cell)))

(defmacro node-contra (cell) ,(rep-contra (cell-repository ,cell)))

(deftype cell (cell-id cell-repository cell-owner cell-name
(cell-contents ()) (cell-state @lose) (cell-rule ())
(cell-equivs ,()) (cell-link ()) (cell-mark ()))

(progn (format stream "<-S (-S-@[ of -S-])"

(cell-id cell)
(if (cell-owner cell)

(aref (ctype-vars (con-ctype (cell-owner cell)))
(cell-name cell))

(cell-name cell))
(and (cell-owner cell) (con-name (cell-owner cell))))

(select (cell-state cell)
((@puppet) (format stream PUPPET>"))
((@slave) (format stream SLAVE-@[ -S-]>"

(select (cell-state (node-supplier cell))
((@king) (node-value cell))
((@puppet) ())
(otherwise

(list 'bad-supplier
(cell-state (node-supplier cell)))))))

((@king) (format stream "-@[~, [OPPOSED]-] KING -S>"
(plusp (node-contra cell))
(cell-value cell)))

((@friend) (format stream "-@[-, [OPPOSED]] FRIEND S>"

(plusp (node-contra cell))
(cell-value cell)))

((@rebel) (format stream 
" 

REBEL -S AGAINST -S)"

(cell-value cell)
(if (eq (cell-state (node-supplier cell)) @king)

(node-value cell)
(list 'bad-supplier

(cell-state (node-supplier cell))))))
((@dupe) (format stream 

" 
DUPE -S AGAINST -S>"

(cell-value cell)
(if (eq (cell-state (node-supplier cell)) @king)

(node-value cell)
(list 'bad-supplier

(cell-state (node-supplier cell))))))
(otherwise (format stream 

" 
BAD STATE ~S)" (cell-state cell))))))

(defun cell-ids (rep)
(require-repository rep)

(forlist (x (rep-cells rep)) (cell-id x)))

TAIuz 6-4. Dlaw Strtictures for Repositories and Cells.



§ 6.3.4 The New Intproi'cd Iiunplenentalion 207

6.3.4. Cells H ave Fields 'l'hat ~ere Formnerly iii Repositorics

Tlhe definitions for tie new repository and cell dat structures described in §6.2.1 arc shown

inlTable 6-4. As before macros namned node-cell1s, node-suppl ier. node-nogoods, and
node-contra arc provided for accessing fields of a repository given a cell. Somnetimies a graph-r
mnacking algorithmn wants to miark at node and not just anl indi% idual cell, hut we have mnoved tile

miark comnponent fromn repositories to cells: thC soIlutionl is to definec node-miark to access thc

mnark comiponent of thie n ode's suppl Iier. ([h is is only one reaison why a niodeialwaiys hais a supplier.)

[he printing forniat For cells has been Updated to be m-ore infoi~rnatike. Consider fbr cxamiple

this interaction. A ftcr these statemnents:

(create too gate)
<FOO: GATE>
(progn (variable x)

(~x (the p too))
( (the a foo) (parameter 5))

(=(the b too) (parameter 5)) .
(~y (default 6))
(=y (the b too)))

(yes. progn is not part of the language, buit I cheated for conciseness), foo is a gate: its p is

connected to x,, its a has the parametric value 5; and its b has the paraimetric value 5 and is also

connected to y which had (lie default. Value 6. 'This causes at contradiction of course, within which

we can exaniine the cells:

These are the premises that seem to be at fault:
< CELL-lB (DEFAULT-76) REBEL 6 AGAINST 5> zY

* CELL-72 (PARAMETER-70) [OPPOSED] KING 5> Y.
;;Choose one ot these to retract and RETURN it.

x
(CELL-61 (X) SLAVE)
(the p foo)
<CELL-55 (P of FOO) PUPPET>
(the a too)
(CELL-5i (A of FOO) SLAVE 5>
(the b too)
(CELL-59 (B of FOO) SLAVE 5>

y
(CELL-is (Y) DUPE 6 AGAINST 5>
(node-supplier (the b too))
<CELL-72 (PARAMEIER-7O) [OPPOSED] KING 5)
(cell-contents y)



208 CIIAP'i'R SIX I'FI:CI'NCY

<CELL-78 (DEFAULT-76) REBEL 6 AGAINST 5>

(Note the use in the LISP code of the special fonn sel ect, which is like the case statement
of algebraic languages. Note too that an otherwise clause has been provided, to print cells
which somehow have a bad state component. Similarly, the code is tolerant of a supplier other than

a king or puppet (this can occur when printing a trace message). The printer is a debugging tool,
and debugging tools must be fairly robust, tolerating errors in the data structures!)



209

(defun node-boundp (cell)
(require-cell cell)
(select (cell-state (node-supplier cell))

((@king) t)
((@puppet) ())
(otherwise (lose "The supplier -S has a bad state." (node-supplier cell)))))

(defun node-value (cell)
(require-cell cell)
(let ((s (node-supplier cell)))

(or (eq (cell-state s) eking)
(lose "Supplier -S for cell -S isn't a @KING." s cell))

(cell-contents s)))

(defun cell-value (cell)
(require-cell cell)
(select! (cell-state cell)

((@slave) (node-value cell))
((@king @friend @rebel) (cell-contents cell))
((@puppet) (lose "Can't take value of the @PUPPfT -S." cell))
((Odupe)
(let ((c (cell-contents cell)))

(require-cell c)
(or (and (eq (cell-repository cell) (cell-repository c))

(eq (cell-state c) @rebel))
(lose "Bad @DUPI indirection from ~S to -S." cell c))

(cell-contents c)))))

(defun node-rule (cell)
(require-cell cell)
(let ((s (node-supplier cell)))

(or (eq (cell-state s) eking)
(lose "Supplier -S for cell -S isn't a @KING." s cell))

(cell-rule s)))

(defun cell-true-supplier (cell)
(require-cell cell)
(select! (cell-state cell)

((@king @rebel @friend @puppet) cell)
((@slave) (node-supplier cell))
((@dupe) (cell-contents cell))))

JAllElO b-S. Funclions for Accessing Valuies of Cells and Nodes.

Lt



210 C1IAPI FR SIX FI:ICIIFNCY

6.3.5. 'he Value of a ('ll May Differ from the Value of Its Node

Bec;iuse the node data structture can norA tolerate contradictions in the form of rebel cells, the
value of a cell is not necessarily that of the node's supplier. Table 6-5 provides some functions

which are useful for manipulating values of cells and nodes. Those whose names begin with
node- deal %%ith the supplier of the gi en cell's node: those "hose nancs begin with ce Il - deal
w ith (lie gi ell cell itself.

The Function node-boundp is a predicate true iff the node has a value: it checks the sup-
plier (and in the process ensures that it is a king or puppet). (It is not necessary to hae a separate
function cel l -botundp. If a cell is a king or puppet, then it is the supplier, and so is bound iff the
note is. If it is a friend, rebel, or dupe, then it is bound: but then there must be a king, and again

is the cell bound ill" the node is. Finally. a sla~e by definition has a value ill' the node (the supplier)

does.)

If the node has a value, then node-va I ue will fetch the value (the contents component of
the suplier cell, %hich must be a king). Similarly, ce 11 - val ue will get the value of tie given cell,
which is the cell's own value if it is a king. friend, or rebel; the supplier's value, for a slave, or the

believed-in rebel's value, for a dupe. (A puppet can never have a value.) The function node - ru l e
gets the rule used to coMpute the node's value. (The function (actually macro) ce 1 - ru I e ob-
viously accesses the cell's rule component, as specified in the definition of the data type ce 11. Te

concept of fetching the rule that computed the cell's value is reasonable, and also ought to be called
ce 11 - ru l e by these conventions, but it turned out not to be needed, and so the naming difficulty
was avoided. One can instead take the cell -rule of the cel l-true-suppl ier of the cell.)

(The i.ISP special form select! is similar to select but automatically supplies an
otherwise clause which signals a correctable l.isp error if no other clause is selected. In contrast,
select merely returns ( ) if no clause is selected, by analogy with cond. Using select!
makes debugging easier without having to provide explicit error checking whenever a selection

statement is written.)

The function ce 1l - t rue- supp l i e r returns the supplier which tie given cell "believes".
Kings, rebels, friends, and puppets believe in themsclves (puppets have no values, but they are still
suppliers): slaves believe in the node's supplier, and dupcs believe in some rebel they point to.



§ 6.3.6 The New Improved Implementation 211

(statistics-counter gen-repository "Repositories generated")

(defun gen-repository ()
(statistic gen-repository)
(let ((r (make-repository))

(n (gen-name 'rep)))
(setf (rep-id r) n)
(set n r)
r))

(defun node-lessp (x y)
(require-cell x)

(require-cell y)
(alphalessp (rep-id (cell-repository x)) (rep-id (cell-repository y))))

(statistics-counter gen-cell "Cells generated")

(defun gen-cell (name &optional (owner () ownerp))
(and ownerp (require-constraint owner))
(if ownerp (require-integer name) (require-symbol name))
(statistic gen-cell)
(let ((c (make-cell))

(r (gen-repository))
(n (gen-name 'cell)))

(setr (cell-id c) n)
(set n c)
(setf (cell-owner c) owner)
(setf (cell-name c) name)
(setf (cell-repository c) r)
(push c (rep-cells r))
(setf (cell-state c) @puppet)
(setf (rep-supplier r) c)
c))

TAHIIF 6-6. Generation of Rcpositories and Cells.

6.3.6. A Newly Generated Cell is Its Own Puppet

The code for generating new repositories and cells in in Table 6-6. Note tile two statistics
co untcrs for counting the number of repositories and cells generated.

If a new cell has no owner, then its name inList be a symbol; but if it has an owner. its nane
must be an integer (a pin number). The initial state of any new cell is @puppet. and it becomes
dic supplier of its onC-cell node.



212 CI IAPITR SIX :1IUM

(deftype hashtable ((haslitable-population 0) hashtahle-array
(hashtable-probes 0) (hashtable-lookups 0)
haslitable-key-extractor hashitable-load-ractor- limit)

(format stream "(Ilashtable -S size=-D population=-D load factor=-S avg probes=-S>"
(haslitable-key-extractor hashtable)
(array- lenjgth (hashtable-array haslitab Is))
(hashtable-popuilation hashitable)

(I(float (hashtable-population hashtable))
(array- length ( hasht~hlc-array haslable))

(ifr ( zerop (hashtable-Iookips liaslitable)) I?
(+ (// (float (hashtable -probes haslitable))

(hashtable-lookips hashtahle))
1)

(defun gen-hashtable (kex &optional (size 63.) (load-factor-lim'it 0.75))
(let ((It (iake-hashtable)))

(setf (hasiable-array hi) (at rayn -q( 2 (hautong size)) 1)))
(setr (haslitabto-key-extractor hi) kex)
(setf (haslitable-load-factor-limiL 11) lodd-factor-lionit)

TABI 1: -7. 1 lamsh Itable [)ctinitioii adI (icraution.

6.3.7. 1 lash Tables Store anid Rletrieve Objects Indexed by Giici Keys

we % ill have an applicationi for hiash tables in a mon~t. and so me pause here to defi ne an
imnplementation. T his section is not a gecral treatise oIl hashing, and thle codc presented here is
not eveii a Parft icl a rly goo(d (or pa rtic ularly bad) hashing tch ig tic. I or at inole gceneral trea tmnit,

sCC jKnuth 1973). Table 6-7 ShlowS tile definition tof the datta typc hash tablIe, which hias these
comlponents:

(a) airriy, an array tused to store hashed records. A record mlay he any object other than () which
is tised to inldicate anl unused array position.

(b) kcy-exiracior which is at ftiiction which %%hen given a record will extract tilc record's key,
which must be an integer. (While keys most be integers. they m~ay be very large integers, and so
siinpl) using the key itself as dhe array index is not a practical technique.)

(C) ppulationi. thle niini1ber of occupIied positions in the array . [his is Present pUreCly liar speed: it
COtild he comlptuted by scanning the array.

(d) load-tiactor-lirnit T[he 1uaIfiwtor of the hash array is thle population divided by the total array
Si, i.e., tile Percentage of usedt positionls. The oad/-flcwrl-fil I it is a1 litlit oil tbis lpercenlage:
when thle popIliltiol becoi les too large. then thle arraty mlust be ex panded. (A nalyses stuch
ats those in I K I Lth 19731 in d Il te [Iiat ihe expected ltme to access at ha shi array is roughly a
fu nctio n of the loA fdacto r. II ence keeping (lhe load tacti r how wiltlt p row t he access littlle.)



§ 6.3.7 The New ImnprovedI Iiplemiemation 213

(defun hash-lookup (n hashtable)
(prog ret ()

(increment (haslitable-lookups hashtahle))
(let ((a (hashtable-array hashtable))

(kex (hashtable-key-extractor hashitable)))
(let ((s (array-length a)))

(do ((probe (mod n s) (mod (+ probe 1) s)))
((null (aref a probe))
(return-from ret () probe))

(increment (hashtable-probes hashtable))
(and (equal (funcall kex (aref a probe)) n)

(return-from ret (aref a probe) probe)))))))

(defun hash-install (k obj hashtable)
(let ((a (hashtable-array hashtable))

(kex (liaslitable-key-extractor hashtable)))
(or (null (aref a k)) (lose -0) slot already filled in -S." k haslitable))
(aset obj a k)
(increm~ent (hashtable-population hashtable))
(lot ((s (array-length a)))

(and (> (haslitable-population hashtable)
(s (hashtable-load-ractor-linit hashtable)))

(let ((newarray (array-n (+ (* s 2) 1))))
(setf (hashtable-array haslitable) newarray)
(do~imes (j s)

(or (null (arot a j))
(multiple-value-bind (item slot)

(hash-lookup (funcall kex (aref a j)) hashtable)
(and item (lose "Weird hashLtable bug: item-S in -S."

iteim haslitable))
(aset (aref a j) newarray slot)))))))

obj))

TI;l 6-8. I lash Tahle I txuktp anid Intstall Operations.

(e) Ivokups. the number of' timcs the llashitahlc has been accessed. This is a statistics couniter, but is
not done via the standard statistics counter mechanism so that it will be per-hasiabic.

(M probes. anlother statistics counter, nilastiring dieC nlumber of unlsuIccessful accesses to the array.
phis PU lookups, all divided by Iookup, is tile average nutlnber of accesses per lookup (a

qitiiitity oneC seeks to nhininiiCe ill tile interests of speed).

[he function gen-hashtable takes a key-extractor function and creates a hashitablc
around it. Thie initial si/c defaults to 63. and die load factor to 0.75. The Si/C is conlstrained to

bc oniC less than a power of two. ('lie I ISP function haul ong. applied to anl integer . computes

[log2(Al + 1 (it is thle -lengthl ofX ill bits"): thus

2 halulong(x) -I

is some n which is one less than it poe of two and not less than x. 'Ibis is a not llnreasonablc

lengthl for a hashtahle, using kev (mod n) as the hashing function. T[he function array-n takes

in intcgcr and constructs a /.ero-origin array of that length.)



214 CIIAPII R SIX il ICIINCY

The Function hash-lookup (Table 6-8) tikes a key and a hashtable and tries to find a
record with that kev in the table. It returns toko values. 'llice first is the record if one was found, or

if none was found. The second is the index into the hash array where tie record was found or
the search terminated. (I'his returning of two values is done %ia the ILisp Machine list, multiple-
value mechanism. If se\eral argunents are given to the return function or one of its variants,

then all the arguments are collectively returned from the enclosing prog. If the p rog's function
was invoked %ia a normal function call, then the first value returned is the functional value, and the
rest are discarded. However, special forms such as mul t ipl e-value-bi nd can be used to get
the other %alues. This technique avoids consing tip and picking apart a list of results: internally all
the returned values are passed "'on the stack".)

The funcion hash- instal l takes an index supplied by hash-lookup, a record (which
should have as key that key used to obtain the index), and a hashlcble. It installs the record in
tie table, and if the load factor has exceeded the limit it creates a new hash array, installs it in the
hastable data structure, and copies the contents of the old array into the new one by re-hashing

diem.

- *.



§ 6.3.8 ['1e New Iprvved Implemetiation 215

(progn 'compile

(defglobal ocotistant-rule* (make-rule))
(setf (rule-code *constant-rule*) 'constant-code)

(defun constant-code (*me*) (lose "Constant rule invoked on -S." *me*)))

(progn 'compile

(defglobal ,delault-rule* (make-rule))
(setf (rule-code *default-rule.) 'default-code)

(defun defauIL-code (*me*) (lose "[efault rule invoked on -S." *me*)))

(progn 'compile
(defglobal *parameter-rtile* (make-rule))

(setf (rule-code *parameter-rule*) 'parameter-code)

(defun parameter-code (*me*) (lose "Parameter rule invoked on -S." *me*)))

(defun globalp (cell)
(require-cell cell)

(and (null (cell-owner cell)) (null (cell-rule cell))))

TAIn t 6-9. Dimu RulIs fibr Constanit. Dcfilti. :1nd Paianictcr ('Ciis.

6.3.8. ('onstant, )cfault, and Parameter Cells I laIve )ummy Rules

Valued cells (those created by the constant, defaul t, and parameter constructs) are

distinguished by the presence of distinguished dunmmy rules, which arc the values of thc variables
*constant-rule., *default-rule*., and .parameter-rule., defined in Table6-9. For

uniformity, every cell which has ius own value (whether a valued cell or a pin) must have a rule.

However, it is an error ever to invoke the rtle of a valued cell. To guard against this possibility (as

it matter of defensive programming), these dumny rules are provided wiMth code components that
will signal a meaningful error.

Cells tor global variables, on the other hand, never have values of their own; thev can be

distinguished by this fact. Hence the predicate g I oba I p, true iff its argulmrent (a cell) is a global

cell, merely checks that the cell has no owner and no rule.

'ihe function i n i t i ali zed-ce l I creates a valued cell -Fpecified type (here specified by

which dummlny rule is provided). A valued cell is initially its own king. I)ef,,uit and paralneter cells

are generated in similar ways; a name is generated, all initialized cell of that name generated with

the appropriate duminy rule, the name given the cell as its value, aid the cell returned.

For constants, however, a hashtahle is used. 'flie global I ISlP variable *constants. is a

hashtable used fur hashing all constant cells. The Function con s tan t-va I ue serves as the key-

extractor. T1o generate a constant of given value, the value is used as the lookup key for tile hash-

table (note the use of mu tip I e-va 1 ue-b i nd to get both the cell, if any, and the hash index).

If a cell with that value is already in the table, it is returned: thus constants are "shared" among

Womb



216 CiIAlIFR SIX FJ l(IIENCY

(statistics-counter init-cell "Initialized cells")

(derun initialized-cell (vaLpP name rule)
(require-integer valuo)
(let ((cell (geii-cell name)))

(setf (cell-contents cell) value)
(setf (cell-rule cell) rule.'
(setf (cell-state cell) fting)
cell))

(defun derault (value)
(let ((name (gon-name 'default))

(let ((cell (initialized-cell value name *detault-rule*)))
(set name cell)
cell)))

(defun parameter (value)
(let ((name (gen-name 'parameter)))

(let ((cell (initialized-cell value namne *parametar-rules)))
(set name cell)
cell)))

(defun constant-value (cell) (cell-contents cell))
(derglobal *constants* (gen-hashtable 'constant-value))

(detun constant (value)
(require-integer value)
(multiple-value-bind (item slot) (hash-lookup value *Conistants*)

(or itemi (hash-install slot
(initial ized-cell value 'constant *cons tant -rules)
.cons tan ts*) 

TAIl.1i6- 10. Generation of Conslan i. De fault, and Paranieer Cells.j

requecsts, Otherwise a new constanlt cc)) is created and installed in dieC hashtablc. (Thec definition of
hashitablcs ill §6.3.7 was a little long, buit sce now how concisely one can bc tUsed! iliis is tlle mark
of a useful data abstraction.)

The sharing of constant cells is not withoUt pciL. Wc iflust ensure that a constant cell, on1ce

created, is ifllrntLtable, and particular call never be retracted. Lter we will see code that checks for

th is explicitly.



§ 6.3.9 The New Improv'ed Impleinentai ion 217

(defmacro variable (namne) (progn (*destroy ',name) (setq ,namne (gen-cell ',name))))

(defmacro create (name type) -*create ',name ,type))

(defun *create (name type)
(prog2 (*destroy name)

(gen-constraint type name)
(run?)))

(statistics-counter gen-colistraint "Constraints generated")

(derun gen-constraint (ctype name)
(require-constraint-type ctype)
(statistic gen-constraint)
require-symbol name)

(let ((c (make-constraint)))
(set name c)
(seta (con-name c) name)
(setr (con-ctype c) ctype)
(setf (con-values c)

(array-of (tortimes (j (array-length (ctype-vars ctype))) I

(gen-cell j c))))
(doarray (bucket (ctype-rorget-rules ctype))

(dolist (rule bucket)
(and (null (rule-triggers rule))

(enqueue-rule rule c t@torget)))) r
0)

TA Ill.1 6-11 II Dcla ration of Vairiables and Co)nstrainrits.

6.3.9. D~eclaration of V'ariables aind Constraints M~ay Require Housekeefiing

T'he variable and create constructs arc implemented as l.Ii inacros ill Tlable 6-11. A
feature commnon to both is that before proceeding the thc definition thc ftitctiof *destroy is

called. Wc % ill sce the definition of this much later suiffice it for flow to nlote that it implemnts
the destroy operation, causing any old value of diC variablc to bc explicitly garbage-collected.
[he reason f'or this care is that thc vcrsions of thc constraint systemn ill the previous chapter were

subject to at subtle (but Iiortmiately scidomn encoulntered) difliculty: if onc wecre to declare a variable

or constraint, then re-declare it. the old and new declarations might co-exist in at single network,

causing some confusion. F~or example, the sequence of statemecnts

(variable x)
(create f'oo adder)

(=x (the a roo))
(create foo adder)

( x (the a foo)) '



218 CIIAPrER SIX EFI"ICII-NCY

would cause the variable x to be connected to the a pins of two adders, the old foo and the

new foo! Explicit destruction of the old value avoids this. )estroying a variable or constraint first

disconnects it from everything else.

When a constraint is generated, the initialization is a little more complicated than before. An

array of pin cells must be created for the %alues component. ('be tiSl function array-of takes a

list and creates a zero-origin array with the same length as the list, and initializes the array elements

from the list in order.)

When the constraint has been generated, there is one final task. "lThere may be rules of the

constraint-type which have output pins and no triggers (probably, but not necessarily, they are

@nogood or @nogoodbeg rules which produce a value speculatively). These rules must be
awakened immediately, to beg for a value, because all their triggers are satisfied! 'Iblis is done by

the doubly nested loop at the end of gen-constraint. The awakening is done by enqucuing
the relevant rules.

An important principle is that queued rules must be given a chance to run. 'Iberefore, when-

ever there is a possibility that a rule (or, for that matter, a contradiction or any other task (though

there are no other kinds in this implementation, I strive for generality!)) has been queued, the finc-

tion run? must be called. This function has the responsibility for starting up the task scheduler if
appropriate. Nearly all the functions which implement user statements of the constraint language

end by calling the run? function: *create is one example.



§ 6.3.10 The New Improved Implementation 219

(deftype queue (queue-name (queue-entries '() (queue-count 0))
(format stream "C~S -D entr~:@P -D enquouing~:P>"

(queue-name queue) (length (queue-entries queue)) (queue-count queue)))

(defglobal *all-queues* '()

(defun queue-stats ()
(dolist (q (reverse *all-queues*)) (print q)))

(defun reset-queues ()
(dolist (q *all-queues.)

(set? (queue-entries q) ()
(setf (queue-count q) 0)))

(dermacro defqueue (name)
.(progn 'compile

(declare (special ,name))
(setq ,name (make-queue))
(set (queue-name ,name) ,name)
(push ,name ,all-queues.)
,,name))

TAmP F.6-12. Queue Data Structure and tMfinition.

6.3.10. A Queue Is Yet Another Abstract Data Structure

A queue is implemented as a data stncture with a name, a list of entries. and a statistics

counter. (As with hashtables, queue statistics arc maintained on a per-qucuec basis. The counter

counts the number of entries ever enqueued on the queue. 'Ibis minus die length of the list of

entries yields the number of entries ever dequeued.) lle global lISi, %arible .al 1-queues.

accumulates a list of all queues ever defined, and the function queue-stats prints the queue

statistics (simply by printing the queues, inasmuch as the print function for queues prints the

relevant statistics anyway).

The function reset-queues causes all queues to be reset; their entries are forcibly

removed, and their counters reset to zero. This is a useful debugging tool when a computation

blows up in the middle.

The macro defqueue defines a queue of a given name. It make a queue data structure,

associates the name with it. and adds the queue to the list of all queues.

The operations on queues are defined in Table 6-13. The predicate queuep is true iff the

argtiment queue has any entries; it is not legal to dequeue an entry unless this predicate is true.

(l'his is not to be confused with queue-p, defined by the deftype declaration of the queue data

type, which is a predicate true iff its argument is a queuel)



220 CIIAPTFR SIX FI:ICIFNCY

(defmacro queuep (queue) -(not (null (queue-entries ,queue))))

(derglobal *queue-trace. t)

(derun enqueue (item queue)
(require-queue queue)
(and *queue-traces

(ctrace "tnqueuing -S onto -S." item (queue-name queue)))
(increment (queue-count queue))
(push item (queue-entries queue)))

(derun dequeue (queue)
(require-queue queue)
(and *queue-trace,

(ctrace "Dequouing -S from -S."
(car (queue-entries queue))
(queue-name queue)))

(pop (queue-entries queue)))

(defun movequeue (to from)
(require-queue to)
(require-queue from)
(and .queue-trace,

(ctrace "Moving -S to -S." from to))
(setr (queue-count to) (+ (queue-count to) (length (queue-entries from))))
(set (queue-entries to) (append (queue-entries from) (queue-entries to)))
(set? (queue-entries from) '()))

(dermacro fromqueue ((var queue) . body)
,(let ((,var ()f)

(unwind-protect (prog2 (setq ,var (dequeue ,queue))
(progn ,@body)
(sotq ,var ()))

(and ,var (enqueue ,var ,queue)))))

TAI|I.I-6-13. Queue Operations.

Ilic enqueuing and dequeting operations provide ctrace output. I lowever, because queue

operations arc so numnerous, the trace output from queuing operations can swamp all other trace

OutpUt. Therefore, a special switch .queue-trace. is provided to suppress tracing of queue

operations while permitting other trace output.

'hc finction enqueue adds an entry to a qucue (increncnting the statistics counter for the

queue): the function dequeue removes an entry and returns it. This particular implementation

happens to provide I.11: (last-in, first-out) queues. This was done for no particular reason other
than that it was easy. A usefiul experimcnt would be to compare different queuing methods for

efficiency in running constraint systems.

The operation inovequeue moves all the entries from one queue to another in one fell

swoop. it is more efficient than separately dequeuing and enqucuing each entry. The statistics

counter of the to-queue is incremented by tile number of entries moved.

IN2AL_



§ 6.3.10 The New' Improved Impliewaion 221

'[7he macro f roinqueue is provided for dequcuing and processing qucue entries in a

protected manner. 'Ilic form

(f'ramqueue ( var queue) ... body

expands into

(let (( var )
(unwind-protect (prog2 (setq var (dequeue queue))

(progn body.
(setq var )

(and var (enqueue var queue)))

Now the i sir special form unwind-protect guarantees to execute all argument forms but th

first whcni returning fromn evaluation of the first. F-ven if there is some kind of error, or th row

operation, thle extra argument forms are evaluated ats the stack is unwound (hence thle name) past
that point. The f romqueue macro binds the specified variable, theni dequcueCs at queue entry from

the qucue and assigns it to var. Thiings are a trifle unsafe during thle instant between the dequeue

and the setq-an asynchronous interrupt at that point could iness things up--bult all is well once

thf irst se tq has taken place. If for any reason an error occurs, during processiiig of the body,

then the entry will be re-queued. (An important case of this is that when processing at contradiction1

Control may be given to the user to choose a culpr'it, lie Might Well just quit to the i-sir top level-

in which case the contradiction queute entry must not he lo1st.) Only if' processing is successfully

completed anid var set to ( ) is the re-eniqueuing avoided. ('The safety factor is the entire reason for

the f romqueue macro.T'hat is why the simpler expansion

(let (( ar ( dequeue queute))
(unwind-protect (progi (progn ... bo(.l'

(setq var ()
(and var (enqueue var queue)))

is not used. Thec period of unsafety from asynchronous interrupts would extend over the setting uip

of die unwind-protect inechanism.)



222 CIIAPTFR SIX I1:I:CIFNCY

Definitions of queues, in priority order
(defqueue *contra-quetue.) ;contradictions to be processed
(defqueue *detector-qucue*) ;rules with no outvars
(def'queue *vanilla-queue*) ;plain rules
(derqueue enogood-queue*) ;&NOGOO) and &NOGOOI)BEG rules
(derqueue *defer-queue*) ;contradictions deferred until rules processed
(defqueue *rebel-queuee) :rules which depended on contradictory values
(detqueue *punt-queue.) ;contradictions deferred indefinitely

(defglobal *run-flags t)
(defglobal *rebel-flag. *

(defun run? () (and *run-flag* (run!)))

(statistics-counter run "Iterations of top-level-loop queue scan")

(defun run! (
(do () (()) forever

(statistic run)
(cond ((queuep *contra-queue*)

(rromqueue (item *contra-queuee) (run-contra item)))
((queuep *detector-queues)
(fromnqueue (item *detector-queue*) (run-rule item)))

((queuep *vanilla-queues)
(fromqueue (item *vanilla-queue*) (run-rule item)))

((queuep snogood-queue.)
(fromqueue (item *nogood-queueo) (run-rule item)))

((queuep *defer-queue*)
(movequeue *contra-queue* *defer-queue*))

((and (null .rebel-flags) (queuep srebel-queue))
(setq *rebol-flags t)
(do ()I

((not (queuep *rebel-queue*)))
(let ((item (dequeue *rebel-queue.)))

(enqueue-rule (car item) (cadr item) (caddr item)))))
((and (queuep *punt-queue.) (y-or-n-p "Process punted contradictions?"))
(movequeue *contra-queue* *punt-queue*))
(t (return 'done)))))

TABIIE 6-14. Constraint Systern Qumu Decfinuins and Task Scteicdir.



§ 6.3.11 The New Improved htiplementation 223

6.3.11. The Task Scheduler Simply Scans the Queues in Order

Tablc 6-14 declares tie queues used in this implementation of the constraint systern (which
were described in §6.2.4). The priority order of tie queues has nothing to do with the order of dcc-
laration (though they arc in fact declared in ordcr fior readability): the priority order is determined
by the task scheduler, the function run!. To provide a handle on the schcduler for debugging
purposes (for example, to examine the state of the queues after entries have been queued and
before they arc processed), there is a switch * run- f Iag. The function run? calls run! only if

ru n - f lag * is set (which it normally is).

'1'c task scheduler checks the first four queues in order, and whichever is first discovered to
have an entry, one entry is carefilly dequcued and processed. Otherwise, if .defer-queue.
has an entry, all of the entries are moved to .contra-queue* for processing. Otherwise.
if *rebel -queue. hts an entry, all entries are separately dequeued and distributed to the
other rule queues. (The movequeue function could have been used here at the cost have
having three separate queues *detector- rebe I -queue., .vani I a-rebel -queue, and
•nogood- rebel -queue*.) Failing that, then if ,punt-queue, has any entries, the user is

asked whither they should be moved to ,contra-queue, for processing. (The I tSP function
y-or-n-p queries the user at the terminal by printing the string, then reading a character and
returning true if y, Y, t. T, space, etc. is typed, or false if n, N, rubout, etc. is typed.) If there is

nothing at all to do, run I returns done.



224 Cll1wll:R SIX IFl:IC~IENCY

(statistics-counter enqueue-rule "Rules enqueued')
(statistics-counter enqueule-added-rule "Added rules enqueued")
(statistics-counter enqueue-forget-rule "Forget rules onquoued")
(statistics-counter enqueue-nogood-rule "Nogood rules enqueued")

(defun enqueue-rule (rule con reason)
(require-rule rule)
(require-constraint con)
(statistic enqueue-rulo)
(or (eq (rule-ctype rule) (con-ctype con))

(lose "flie CTYPE of -S doesn't match that of -S." rule con))
(let ((queue-item (cons rule con)))

(select! reason
((@added)
(statistic enqueue-added-rule)
(cond ((null (rule-outvar rule))

(enqueue queue-itei *detector-queues))
((bit-test tirule-nogood (rubo-bits rule))
(enqueue queue-item *nogood queue*))
((and (hit-test trule-nogoodheg (rule-bits rule))

(not (node-boundp (aref (con-values con) (rule-outvar rule)))))
(enqueue queue-item *nogood-queue*))
(t (enquleue queue-item *vanilla-queue*))))

((Viorget)
(statistic enqueue-forget-rule)
(cond ((or (bit-test trule-nogood (rule-bits rule))

(bit-test trule-nogoodbeg (rule-bits rule)))
(enquteue queue-item *nogood-queue.))
(t (enquoue queue-item *vanilla-queue*))))

((@nogood)
(Statistic enqueue-nogood-rule)
(and (not (and (bit-test @rule-nogoodbeg (rule-bits rule))

(node-boundp (aref (con-values con) (rule-outvar rule)))))
(enqueue queue-item #nogood-queue*))))))

lAR11.1 -15. )Lcidintg in Which Quci ic 1(j Fnq ucuc a Ruole.

6.3.12. The Priority of a Rule D~epends onl Its Properties

T[he function en queue -irule of lablc 6-15 is used to miake an oently onl thce standard rule
queuies Ohose othecr than * rebel - queue). [lhe Fuinction takes a rulc, the colistraint to apply it to.
arid the reason for the ellqueoiig. (The1 reasonl is not actually used mutch here, except to eliniimale

somle case-checking. In all early v.ersion oif this inipleirientation, there was a mnore corlicated
priority structure that depended onl thc reason for qululing as %%ell as the characteristics of tileirule.
T[his comnplex situcture was simplllified for tile purposes of, the cuirrent presentation.) The reasonl

inustl be one of (he symbolic constants @added. V farge t. or @nogood.

If the rule has ilo oulpult pill (thlis Canl occur Only if the reason is @adde d), then it is a detector
rile and is enqluetled onl *detector-queuo.. If the ruile has (hie @nogood or @nogoodlbeg



§ 6.3.13 The vet Iinprtcd IlIPIC/eii1aiion 225

bit set, then it should be enqueued on *nogood-queue*. A @nogoodbeg rule, however,
should not be enqueued if its output pill has a %alue alrcady (but this cannot occur if the reason is
@forget). In all other cases the rule is enquCued on *van i I1 a-queue*.

6.3.13. Rule I)efinitions Explicily SIvcify Output Pins

Before examining the details of how rules are run, it is appropriate to review the new format
for rule definitions alluded to in §6.2.2 and the con~eltions for computing alucs. Recall as an

example the definition gi~en belore for gate:

(defprim gate (p a b)
((p) (it (or (= p 0) (- p 1)) @dismiss tlose)).
((p &nogoodbeg) () (resolve-among '(0 1)))
(p (a b) (if (- a b) @dismiss 0))
(b (p a) (if (= p 1) a @dismiss))
(a (p b) (ir (= p 1) b @dismiss)))

A rule definition may ha~e two or three elenents. Ilie last is the body, a single I.IsIr fori which

computes the value. The penultimate forn is a list (if names ot trigger pins. The first of three,
if present, may be either the name of an output pin, or a list containing the name of an output
pin and/or keywords. (Following the ILisp Machine I.ISP convention, keywords begin with "&".)

Currently the only keywords are &nogood and &nogoodbeg (but the syntax allows adding new
keywords later), which may not be used together and may only be used when an output pin is
specified.

[he rule body is executed only ifall the trigger pins have values. In addition, a &nogoodbeg
rule need not be run if its Output pin already has a value. Within the rule body the names of trigger
pins may be used as I ISlI variables to refer to the values of the pins (as before). The hody should

return either an integer or one of the values @1 ose or @di smi s s, meaning "contradiction" and
-no value", respectively. A detector rule is not permitted to return an integer.



226 CIIAPIR SIX IFFFICIIFNCY

(Statistics-counter run-rule-try "Attempts to run a rule")
(statistics-counter run-rule-win "Successfully run rules")
(statistics-counter run-rule-dismiss "Rule runs which dismissed")

(defun run-rule (queue-item)

(let ((rule (car queue-item))

(con (cdr queue-item)))
(require-rule rule)
(require-constraint con)

(or (eq (rule-ctype rule) (con-ctype con))
(lose "The CIYPE of -S doesn't match that of -S." rule con))

(statistic run-rule-try)
(setf (con-queued-rules con) (logclr (rule-id-bit rule) (con-queued-rules con)))

(do-named check-loop

((tr (rule-triggers rule) (cdr tr)))
((null tr)

(ctrace "Running rule -S on -S." rule con)
(statistic run-rule-win)

(let ((result (funcall (rule-code rule) con)))

(select result
((@lose)
(signal-contradiction (forlist (tr (rule-triggers rule))

(aref (con-values con) (car tr)))

con))
((@dismiss) (statistic run-rule-dismiss))

(otherwise
(require-integer result)

(or (rule-outvar rule)
(lose "Rule -S has no output pin but returned -S."

rule result))
(process-setc con rule result)))))

(let ((trigger (aref (con-values con) (car tr))))

(select! (cell-state trigger)
((@slave) (or (node-boundp trigger) (return-from check-loop)))

((@dupe))
((eking friend @rebel)

(or (bit-test @rule-nogood (rule-bits (cell-rule trigger)))

(bit-test @rule-nogoodbeg (rule-bits (cell-rule trigger)))

(return-from check-loop)))

((@puppet) (return-from check-loop)))))))

TAnll.t 6-16. Applying a Rule to a Constraint.

I

-- .- ~ e



§ 6.3.14 The New Inproved InIplentiiation 227

6.3.14. ThelTriggersof a Rule Must Ilave Values When It Is Run

The function run- rule (lable 6-16) takes a quuc centry (containing a nile and a constraint)

from a rule queue and runs the rule on the constraint if appropriate. First the bit in the con-
straints queued-rules component corresponding to the rule's id-bit is reset, to indicate that the
rule is no longer on the queue for that constraint. ('le I.isI' function ( Iog cl r x y) perforims

( ogand (1 ognot x) y )-it clears bits of y where x has one-bits.) Next all the triggers of
C',e rule are checked. Ift a trigger is a slave, then its supplier must have a value. If tie trigger is a
dupe, it necessarily has a value. On the other hand, a puppet never has a value.

The test in the other three cases may seeni a trifle strange: the trigger passes the test only if
the rule that supplied the value is a &nogood or &nogoodbeg rule. [he key is to realize that if
the trigger is a king, friend, or rebel, then the value must have been computed by the constraint
we are considering applying a rule for. Now, there is a convention in this constraint system that no
ordinary rule ever awakens another rule for the same constraint; the same effect can be achieved by
letting the second rule's triggers include those of the first rule and duplicating the first rule's coM-
putation. Such duplication is seldom necessary in practice, and the effort saved by not awakening
rules is considerable.

If the triggers pass the test, then the rule code (a 1.sr finction) is applied to the constraint. If
the result is @I ose, a contradiction is signalled via the function s i gnal -contrad i ct ion. If
it is @dismiss, then a statistic is tallied and nothing else occurs. Otherwise, the result must be
an integer to be installed as the output pin's value (there must be an output pin) via the function

process-setc.

~--.,



228 CIAPI 1.R Six LllICIENCY

(defun process-setc (con rule value)
(require-constraint con)
(require-rule rule)
(require-integer value)

(lot ((cell (aref (con-values con) (rule-outvar rule)))

(sources (forlist (tr (rule-triggers rule))
(aref (ctype-vars (con-ctype con)) tr))))

(ctrace "-S computed -S for its pin 'S
~

[2*~; from pin~P ~{St, ~}].
con
val lie
(arefr (ctype-vars (con-ctype con)) (cell-name cell))
sources

(length sources)
sources)

(process-setc-work con rule value cell)))

(statistics-counter process-setc-override "lules which overrode other rules")
(statistics-counter process-setc-supersede "Rules which superseded other rules")

TAI 1:6-17. Installing a CotnjmitCd Valutc in PIm (i).

6.3.15. Installing a Value in a Pin ('1hages the Pi~l's Cell-state

lhe It nction p roc e s s - s e t c ('lable 6-17) does sonic error-check ing. p rints a trace message,

and then hands off the real work to process -setc-work.

'Ihe function process-se tc-work ('lable 6-18) does the error checks all over again (for
robustness, never trust anY code onl another page). (Note: when con is ( ) thii the given cell is
(rathcr. was) a de fau I t or parameter cclN, and may not be a king, friend, rebel, or dtipe. 'Ilis

is used by the change function for altering dcfatlts and parameters.)Tihere are then several cases,

depending on the current cell-state of the pin.

If tie outlput pin is a king. friend. or rebel, then some other rile of the same constraint has
already computed a alue for tile pin. Ifdie ncW value is not the same s the current value, then
it is a hard error (rules of' the same constraint shotoldn't conflict), unless the rule hich computed
the old ',aloe was a &nogood or &nogoodbeg role. in which case the new value may override
die old one: the old one is fircibl forgotten, and lien the processing restarted (by simply calling
process -setc -work tiil-recursi ely). If ihe new value is the same as the old value, then notlh-
ing need lie done, bit as ,a peculiar heuristic the new role .upcrrdes the old one as the justification

if the new rule's triggers arc a solbet of the old one's triggers-his miakes tile valtie less likely to be
forgotten if an tmnecessary trigger is fongotten. I lowever, it is not correct to do this merely because
the si/c of the new rutle's trigger set is smaller ihan hit of (le old rule: ,'iat might introduce
circular dependency structures. The new trigger set must be a subset of tile old.



§ 6.3.15 A/C 5 uw Imjnpo ii! Ilndeialiln 229

(defun process-setc-work (con rule value cell)
(and con (require-constraint con))
(require-rule rule)
(require-integer value)
(require-cell cell)
(select! (cell-state cell)

((@king @friend @rebel)
(or con (lose "No constraint in l1ROCESS-SFIC-WOllK?"))
(cond ((not (equal (cell-contents cell) value))

(cond ((bit-test @rule-nogoodbeg ( rule-hits (cellI-rule cell)))
(ctrace "Rule -S overrides value -S of rule -S with -S."

rule (cell contents coil) (cell-rule cell) value)
(statistic process-setc-overr ide)
(forget cell)
(process-setc-work coil rule value cell))
(t (lose "Rules -S and -S or -S disagreed on value for pin -S

(respective values were -S and -S)."
(cell-rule cell)
rule
con
(aref (ctype-vars (con-ctype con)) (cell-name cell))
(cell-contents cell)
value))))

((contains (rule-triggers (cell]-rule cell)) (rule-triggers rule))
(statist ic process-setc-supersede)
(setf (cell]-rule cell) rule))) ;bogus heuristic

((@puppet)
(setf (cell-contents cell) value)
(setf (cell-rule cell) rule)
(setr (cell-state cell) @king)
(awaken-all (node-cells cell) @added cell))
((@slave @dupe)
(setf (cell-contents cell) value)
(setr (cell-rule cell) rule)
(coed ((node-boundp cell)

(cond ((equal value (node-value cell))
(setf (cell-state cell) @~friend))

(t (setf (cell-state cell) @lrebel)
(increment (node-contra cell))
(note-rule-contradiction con rule cell))))

((eq (cell-state cell) @dupe)
(lose -S was a @DUPE in a valueless node." cell))

(t (usurper cell)
(setf (cell-state cell) @king)
(awaken-all (node-cells cell) @added cell))))))

[OA1. 6-18. Ilislalling a Coinpuc-d Value in it I'mi (ii).

If thle output pin is a puppet, thell it call simnply be miade kinig, tile aloec installed, alid all the

cells of (lie lnde av ;kcled (except tleC omlptt pill itslf-tiis su~ppressini is accomiplishied by the

third algtllicrnt to awaken- allI).

Ifthle otutpt pill is a slawe or a duipe, then if thc node's stupplier has a value (it mutst ifthli pin

is a dupe!). (li otput pill hcns a frienid or a rebel depenlding oil v" hedier or lnot (lie new value



230 CIIAPTFR Six EFICI-ENCY

agrees with the king's. If it becomes a rebel, the contra count of the node is incrcmented, and the

contradiction created is noted via note- rule-contradict ion.
If the output pin is a slave and the node is supplied by a puppet. then the Outtput pin usurps

the puppet's throne. makes itself king, and awaken% all the cells excepting itself. (Usurpation causes
the specified cell to become the supplier of ie node.)



§ 6.3.16 The New~ Improval Imj)efleema lion 231

y Y

(a) Rooted at cell X (b) Re- rooted at cell Y

FlGlUM:6-6. USuI1iIng ii Supplier.

(statistics-counter usurper "Usurpations")

(defun usurper (call)
(require-cell cell)

(statistic usurper)
(let ((s (node-supplier cell)))

(point-links-toward cell)
(let ((sc (cell-state cell))

(sx (cell-state s)))
(setf (cell-state s) sc)
(setf (cell-state cell) sx))))

(defun point-links-toward (cell)
(require-cell cell)

(do ((x cell (progl (cell-link x) (setf (cell-link x) y)))

(y () W)
((eq x (node-supplier cell))

(setf (cell-link x) y)

(setf (node-supplier cell) cell))))

TALE I6-19. Usurping the Throne of the Suipplier of a Node.



232 CIHAPliR SIX I'I:J:ICi).NCY

6.3.16. Usurping a Supplier Simply Reverses Links frot Usurper to Supplier

The operation of usurpation takes a cell and causes that cell to be the supplier of its node. The
primary task here is rearrangement of tie link components so that all link paths lead to the new
supplier. 'Ihis is easy. Consider the path along link edges between the proposcd usur)er and the
current supplier. If those edges are simpl) revcrsed in direction, then the desired result is produced.
An example of this appears in Figure 6-6, Ahcih depicts the link edges connecting the cells of a
node. In Figure 6-6a the cell X is the supplier. In Figure 6-6b the cell Y has usurped X, and the
links along the path from Y to X have been reversed (indicated by heavy arrowheads).

The function point-1 inks-toward (Table 6-19) accomplishes this task. (In structure
point-i inks-toward is similar to the i iSP function nreverse, which destructively reverses
a list.) At each step x is a cell along the path from usurper to supplier, and y trails one step
behind: on each iteration, and at the end. one link edge is reversed. The function usurper calls

point-I inks- toward and also then exchanges the cell-states of the usurper and old supplier,
as a convenience (often this does the right thing, as when a slave usurps a puppet).

t!

"iI

F



233

(derun signal-contradiction (cells con)
(require-constraint con)
(ctrace "Contradiction in -S-@[ among these pins: ~:{(Sz~S~:t, }]."

con
(forlist (cell cells)

(require-cell cell)
(list (aref (ctype-vars (con-ctype con)) (cell-name cell))

(cell-value cell))))
(enqueue (list* @constraint

con
(forlist (cell cells)
(require-cell cell)
(cons cell (cell-value cell))))

scontra-queues))

(defun note-rule-contradiction (con rule cell)
(and con (require-constraint con))
(require-rule rule)
(require-cell cell)
(or (and (eq (cell-state cell) @rebel)

(eq (cell-state (node-supplier cell)) @king))
(lose "-S doesn't conflict with -S after all!" cell (node-supplier cell)))

(and con
(let ((triggers (forlist (tr (rule-triggers rule))

(aref (con-values con) tr))))
(ctrace "Contradiction in -S-@[ among these pins: ~:(~S=S:, ~};

-%;/I it calculated -S for -S from the others by rule -S."
con
(cons (list (aref (ctype-vars (con-ctype con)) (cell-name cell))

(node-value cell))
(forlist (c triggers)

(require-cell c)
(list (are? (ctype-vars (con-ctype con)) (cell-name c))

(cell-value c))))

(cell-contents cell)
(aref (ctype-vars (con-ctype con)) (cell-name cell))
rule)))

(enqueue (list @node cell (node-supplier cell))
,contra-queue.))

(defun disallow (&rest cells)
(dolist (c cells) (require-cell c))
(let ((prems (fast-premises* cells)))

(enqueue (cons @resolution (forlist (p prems) (cons p (cell-value p))))
*contra-queue*)

(run?)))

TAI.i:6-?(I. Signalling Con tlradicl ios.



234 CHlAVITR SIX FII:.ICIiFNCY

6.3.17. Signalling a Contradiction Merely Queues a Contradiction Task

The functions signal -contradiction (used by the finction run-rule in Table 6-16

(page 226)) and note-rule-contradiction (used by the function process-setc-work

in 'lable 6-18 (page 229)) each signal a contradiction by enqucuing a task to process it later.

Apparentl, the only difference between them is the error checks they pcrform and the trace output

cmitted: howe\cr, thcy cnqueuc slightly different kinds of tasks. The fiction signal -contradiction

(Table 6-20) is called when some rule returned @lose to indicate that a contradiction was
detected without returning a alue. In this case the contradiction is blamed on the constraint, and

a @con strain t contradiction task is enquceued. The queue entry contains the constraint which

detected the contradiction, and an association list of pins with values, indicating the trigger values
that caused the contradiction. This information must be saved because by the time the contradic-

tion task is dcqucued for processing the pins may have different values, but the contradiction is
based on those particular values. If the pins no longer have those values, then the contradiction

described by the queue entry is no longer in effect.

On the other hand, note- rule-contrad i ct ion enqueues a @node contradiction task.

The queue entry contains two cells of the same node which are in conilict, one being the supplier

(at the time the task is enqueued) and the other a rebel. If when the task is processed the cells no

kmger conflict, then the contradiction is no longer in effect.

The user finction disallow exemplifies the third kind of contradiction task, of type
@resolution. '[he queue entry contains an association list of cells and values as for a

@constraint task, but mentions no constraint. The cells have no local association, but have been

determined from global considerations to he contradictory when they have those values. Usually

such a collection of cells is obtained by resolution of nogood sets, but here d isa l l ow allows the

user to specify an arbitrary contradictory set of cells. The collecti c premises of the cells supplied
by the user are tracked down and declared contradictory. As v ith all user interace functions which

enqueue tasks, d i s a I ow finishes by calling run ? to enable task scheduling if appropriate.

" - , '.



§ 6.3.17 The Not, Imprvoe, Implementation 235

(statistics-counter run-contra "Contradictions dequeued for processing*)
(statistics-counter run-contra-node "@NODE contradictions dequeued for processing")
(statistics-counter run-contra-ronstraint

"@ONSlrAINT contradictions dequeued for processing*)
(statistics-counter run-contra-resolution

"@IIESOLUIION contradictions dequeued for processing")

(defun run-contra (queue-item)
(statistic run-contra)
(setq *rebel-flag* ())
(select! (car queue-item)

((@node)

(statistic run-contra-node)
(let ((cl (cadr queue-item))

(c2 (caddr queue-item)))
(require-cell cl)
(require-cell c2)
(or (null (cdddr queue-item))

(lose "Bad @NOD[ contradiction queue item -S." queue-item))

(or (not (eq (cell-repository ci) (cell-repository cl)))
(not (eq (cell-true-supplier cl) cl))
(not (eq (cell-true-supplier c2) c2))
(and (node-boundp cl) (equal (cell-contents cl) (cell-contents c2)))
(process-contradiction queue-item (cdr queue-item)))))

((@constraint)
(statistic run-contra-constraint)
(let ((con (cadr queue-item))

(alist (cddr queue-item)))
(require-constraint con)
(do ((a alist (cdr a)))

((null a)
(process-contradiction queue-item (rorlist (a alist) (car a)) con))

(let ((cell (caar a))
(val (cdar a)))

(require-cell cell)
(require-integer val)
(or (and (node-boundp cell) (equal (cell-contents cell) val))

(return))))))
((@resolution)
(statistic run-contra-resolution)
(let ((alist (cdr queue-item)))

(do ((a alist (cdr a)))
((null a) (process-contradiction queue-item (forlist (a alist) (car a))))

(let ((cell (caar a))
(val (cdar a)))

(require-cell cell)
(require-integer val)
(cond ((or (not (node-boundp cell))

(not (equal (cell-contents cell) val)))
(install-nogood-set

(forlist (a alist) (cons (cell-repository (car a)) (cdr a))))
(return)))))))))

TAIII.16-21. Running a Contllradictioll Task.

-. 4



236 CHIAPTE~R SIX E Ii ICIENCY

6.3.18. Contradictions Must Stilt I told at the 'ime of P'rocessinig

T'he purpose of thc fuinction run-contra (Table 6-21) is to vcrif% that a dequeucd con-
tradiction task still dcscribcs a contradiction. If ttic contradiction is still in die nemo rk, it is handed

off to process-contradict ion, if not, then the task is dismissed and forgotten.

'lherc are three kinds ofcontradiction (@node. fcons tra int, and @resolJut ioni), and so

three cases in the code for run -cont ra.

For at @node task, the qucuce entry contains exactly two cells, which at thc timec thc task was

queued were cells of the same node asserting different values. TFhe contradiction not longer holds
if they no longer share a repository (and so are no longer of the same nodc-hey may have beeni
disconnected!); if either is not its own truc supplier (if onc is now a sla~e or dupe). then another

contradiction will hame been enqueucd involving [lhe new king or rebel, so this one need not be
processed);, if either has no value-, or if their v'alues agree.

l:or i @constra int task, tie queue item hasaitconstraint and an association list pairing pins

of the constraint with values that triggered a contradiction. The contradiction still holds only if all
thc cells still have values matching the paired values.

For at @resol ut ion task, the queue item tias just an association list pairing cells with valucs
that triggered a contradiction. Tlie contradiction still holds only if all the cells still have values
miatching the paired values. If thc contradiction does not now hold, however, it is nevertheless

important that a nogoo~d set be installed.

- - I



§6.3.18 The News Improved lImpleeintaiwr 237

(defmacro mark-cell (cell val) (setf (cell-mark ,cell) ,val))
(detmacro unmark-cell (cell) (setf (cell-mark ,cell) )
(defmacro cell-markp (cell) (cell-mark ,cell))

(declare (special 'def'aults. *parameters* onogoods. *default-trees* *links.))

(defun rast-premises (cell)
(require-cell cell)
(prog ((*defaults* ()

(*parameters* ()
(*nogoodso I())
(edefault-treess ()
(*links. '0)))

(let ((flag (fast-premises-mark cell)))
(select ring

((@lose @dismiss))
(otherwise (push (if (null (cdr flag)) (car flag) cell)

*default- trees.)))
(fast-premises-unnmark cell)
(return (append ederauits. *parameters. snogoods.)

*defaults* *parameters* *nogoods. edorault-trees. slinks.)))

(defun fast-premises. (cells)
(prog ((*defaults* ()

(*parameters* ~
(.nogoods. I0))
(sderault-Lreese 0
(*links.*))
(let ((flag (fast-premises-tnarke cells)))
(select flag

((@lose @dismiss))
(otherwise (setq edefault- trees.

(if (< (length flag) (length cells)) flag cells)))))
(fast-premises-unmark. cells)
(return (append *defaults. *parameters* .nogoods.)

*defaults* *parameters* *nogoodss edefault-treess *links*)))

TABLI- 6-22. Faist Comiputation of Preniises andl Related Qtiaiitilics.



238 CIIAtY-IIR SIX EFFtICIENCY

6.3.19. Computation of Premises Also Determines Sumnmarizations of Defaults

Before we consider the processing of contradictions, it is appropriate to discuss the tracing
of premises and thc determination of an appropriate summarization (as dcscribed in §6.2.6). 'he
function fast-premi sos in Tablc 6-22 computes not only die list of premiscs. but also separate
lists of parameter, default, and "'nogood" (assumption) premises, a list of summarizations of

the defaults (called the "default-trees" because each summarization is the root of a tree whose
leaves are defaults), and the set of links between cells trav'ersed at each nodc (this is the set of

equatings along Ahich the computation traveled). These quantities are accumulated in the IISP
special variables bound to empty lists in the prog. The list of premises is simply the concatena-
tion of the lists of defaults, parameters, and assumptions. After fast-premises-mark and
f ast-premises-unmark are called, allsix lists arc returned as values, using the Lisp Machine
LISP multiple-value convention. If fast-premises is called as a simple risp function, the list of
premises is the result (as before), and the other five lists are discarded. All the lists can be obtained

by using the Lisp Machine ISIP mul t i pl e-val ue-b i nd construct.

The function f as t-p rem i ses* performs the same operation on a list ofcells.

Thc macros mark-cel 1, unmark-cell, and cel 1-markp are operations on the mark

component of a cell. Note that mark-rcel takes an extra argument which is the mark value (thus
it implements not a mark bit, but a mark quantity.

LIM.-



§ 6.3.19 The New Imnprov'ed Imnplemntiiation 239

(defun fast-premises-mark (cell)
(require-celcell)

(let ((s (cell-true-supplier cell)))
(cond ((cell-markp s)

(and (eq (cell-mark s) t) (lose "Circular dependency at -S." cell))
(cell-mark s))
(t (mark-cell s t) ;for error checking!

(fast-premises-mark-links cell s)
(let ((result (rast-prcnses-mark-test s)))

(mark-cell s result)[

(defun fast-premises-mark-links (x y)
(prog foo (linksl llnks2)

(do ((c x (cell-link c)))
((null (cell-link c)))

(cond ((eq c y)
(setq *l inks* (nconc linksl *links*))
(return-from foo)) ;fast escape
(t (push (cons c (cell-link c)) linksl))))

(do ((c y (cell-link c)))
((null (cell-link c)))

(cond ((eq c x)
(setq *links. (nconc links2 slinks.))
(return-from foo)) :fast escape
(t (push (cons c (cell-link c)) links2))))

(setq *links* (nconc linksl links2 *links*))))

(defun fast-premises-mark-test (s)
(cond ((eq (cell-rule s) .default-rules)

(push s *defaults*)
(list s))
((eq (cell-rule s) sparameter-rule.)
(push s *parameters*)
flose)
((eq (cell-rule s) *constant-rules) @dismiss)
((or (bit-test Brule-nogood (rule-bits (cell-rule s)))

(bit-test @rule-nogoodbeg (rule-bits (cell-rule s))))
(push s snogoodso)
flose)
(t (fast-premises-mark.

(forlist (tr (rule-triggers (cell-rule s)))
(aref (con-values (cell-owner s)) tr))))))

TAnix.! 6-23. Galhering Premnise and L ink Inforniation.



240 CIAP'IIR SIX IFFICIIENCY

The function fast-premises-mark (Table 6-23) is a good (leal more complex than
before. All the informhation is accumulated in he global variables bound in fast-premises,

and die functional NaluC of' fast-pramises-mark is used as a flag. The symbolic constants

@dismiss and @lose are abusiely pressed into service here. If die returned value is
@dismiss then no default, parameter, or assumption cells were encountered in the subtree
depending from the argument cell. If thc returned value is @1 ose then a parameter or assumption
cell was scen somewhere. Otherwise the returned value is a list of all the default cells found in the
subtree.

When a cell is given to fast-premi ses-mark, its true-supplier is taken. If it is unmarked,

then the mark is first set to t. The operation fast-premi ses-mar'k-I inks accumulates the
link information between the cell and the true-supplier, and then fast-premi ses-mark - test
figures out an appropriate return value. This value is then stored in the mark for the true-supplier.
If this cell is ever encountered again during the tracing of premises, the contents of the mark
component is returned immediately. An important point is that the value t can never be seen in a

mark cell-that value is put in only for an error check! If it is seen, then the dependency structure
must be circular (because there is a t in cells only along the path from the root of the tree being
searched to the cell currently being considered).

The function fast-premi ses-ma,'k-I inks follows the links from the cell and its true-
supplier, pushing pairs of cells representing equatings onto * I inks *. Non-nally the supplier will

be the node's supplier, and so the first do loop will get them all. However, if the cell is a dupe and

the true-supplier a rebel, then there are three cases:

(i) Following links from the dupe leads to the rebel.

(2) Folhlwing links fioni the rebel leads to the dupe.

(3) Following links from either leads to the node's supplier before reaching the other.

All of these cases have to be dealt with properly.

i.



§ 6.3.19 The New, Improvted Implementation 241

(derun fast-premises-mark. (cells)
(let ((trees '())

(defaults ())
(state @dismiss))

(dolist (c cells)
(let ((result (fast-premises-mark c)))
(select result

((flose) (setq state @lose))

(otherwiser
(push c trees)
(select state
((flose)) -

((@dismiss) (setq state t) (setq defaults result))
(otherwise (setq deraults (unionq result defaults))))))))

(and (eq state flose)
(setq aderault-treess

(nconc (if (< (length trees) (length defaults)) trees defaults)
*def'aul t-treeso))

(if (eq state t) defaults state)))

(defun fast-preniises-unmark (cell)
(require-cell cell)
(let ((s (cell-true-supplier cell)))

(cond ((cell-markp s)
(unitark-cell s)
(fast-premises-unmark.

(forlist (tr (rule-triggers (cell-rule s)))
(aref (con-values (cell-owner s)) tr)))))))

(derun rast-prentises-unmark. (cells)
(dolist (cell cells) (fast'premises-unmark cell)))

TAHHl:6-24. Traicinig Premnises for a List of Cells, and Unnmarking.

'be ftinction fast-premises-Mark--test handles tile various cases and determines the
value to bc returnied as described above. If the stupplier is Ilot interesting. then the triggers for the
rtlec that compuited its valuc arc recursively traced using fast-prclliscs-nlark (TFable 6-24). 'Ibis

ftunction traces Cachl of tile givcn cells, and combinecs thc results. If any of tilcin conltainls somecthinlg

other than a defatt cell (the value @1 ose was rceturned), then @1ose mtust be retturned from

tilis level, and tile suIbtrecs approprilitcly SUllnari/.cd and added to *defaul t-trees*. At

each recursive level of call to fast-prenlises-inark* a hetiristic stinlinarization can be done.
Note that the set-union operation tin i onq is used rathler tilan append because stmtrcss may be
shared, and some of thle results may have been obtained from cached lists in the cell mlarks. All thlis

serves to reduce tile si/c of nogood sets as mfuchl as possihle.

The functions f ast-premiises -mark and fast-premises-mark., as before, run

around and reset all tie cell mnarks.



242 CIhAPFR SIX lI'VICIENCY

(statistics-counter process-contra "Contradictions actually processed")
(statistics-counter process-contra-auto "Nogood culprits automatically chosen")

(defun process-contradiction (queue-item cells &optional (con () conp))
(and conp (require-constraint con))
(statistic process-contra)
(multiple-value-bind (premises delaults params nogoods trees links)

(fast-premises, cells)
(cond ((not (null nogoods))

(ctrace "Deeming -S in -S (computed by rule -S) to be the culprit."
(cell-value (car nogoods))
(cell-id (car nogoods))
(cell-rule (car nogoods)))

(statistic process-contra-auto)
(form-nogood-set

(append nogoods params trees))
(.retract (car nogoods)))

((null premises) (los-e "Hard-core contradiction!"))
((null (cdr premises))
(and params (form-nogood-set (append params trees)))
(*retract (car premises)))
(t (and params (form-nogood-set (append params trees)))

(let ((choice (choose-culprit premises)))
(select choice

((@defer) (enqueue queue-item *defer-queue,))
((@punt) (enqueue queue-item *punt-queue*))
(otherwise (require-cell choice) (*retract choice))))))))

TABLE 6-25. Proccssing of Contradictions.

6.3.20. Contradiction Processing Traces Premises and Chooses a Culprit

Now that fast-premises thoughtfully divides the premises into groups and returns them,
the task of process-contradiction (Tablc6-25)is easier. ltcallcs fast-premises using

multiple-value-bind to get the six return values, and then makes sonic simple tests. If
there are any assunptions, a nogood set is formed from tie assumptions, the nogoods, and the
summariations of defaults, and then the first assumptions is arbitrarily chosen for retraction. If

there are no premises at all, it is a hard contradiction. If there is one premise, it is chosen by default
for retraction, and a nogood set is formed if there are any parameter cells among the premises.

Otherwise, choose-cu I p r i t is called to select a culprit (and, as in the previous case, a nogood k
set is formed if any parameters are involved). If choose- cu I p r i t returns @defe r or @pun t
rather than a culprit, then the contradiction is re-queued for later processing.



§ 6.3.20 The New Improved Inplemetafion 243

(defun form-nogood-set (cells)
(setq cells (sort (append cells '()) #'nodo-lessp))
(ctrace *The set~:[~<~%;J-8X~:15,72; ~S=-S->:t,~)~<~%;J~8X~:15,72; is no good.->"

(forlist (c cells) (list (cell-goodname c) (cell-value c))))
(install-nogood-set

(forlist (c cells) (cons (cell-repository c) (cell-value c)))))

(statistics-counter nogood-set "Nogood sets installed")

(defun install-nogood-set (alist)
(statistic nogood-set)
(lot ((nogood (cons 'nogood alist)))

(dolist (pair alist)
(let ((rep (car pair))

(val (cdr pair)))
(let ((slot (assoc val (rep-nogoods rep))))

(cond (slot (or (member nogood (cdr slot)) (push nogood (cdr slot))))
((or (null (rep-nogoods rep))

(< val (caar (rep-nogoods rep))))
(push (list val nogood) (rep-nogoods rep)))
(t (do ((ng (rep-nogoods rep) (cdr ng)))

((or (null (cdr ng))
(< val (caar (cdr ng))))

(setf (cdr ng)
(cons (list val nogood)

(cdr ng))))))))))))

TADIE 6-26. Formation and Installation of Nogood Sets.

(defun choose-culprit (losers)
(format t "~%;;; These are the premises that seem to be at fault:-

(forlist (p losers)
(cons p (mapcan #'(lambda (c)

(and (globalp c)
(eq (cell-true-supplier c) p)
(list (cell-name c))))

(node-cells p)))))
(format t "-%;;; Choose one of these to retract and RETURN it.")
(let ((culprit (break "Choose Culprit")))
(cond ((or (eq culprit @defer) (eq culprit @punt)) culprit)

((memq (cell-true-supplier culprit) losers)

(cell-true-supplier culprit))
(t (choose-culprit losers)))))

TARI~r.6-27. Choosing a Culprit.

Nogood sets have the same structure chat they did in previous versions , the system.

However, form-nogood-set (Table 6-26) has been split into two funclions, one to print a trace

message and f'orm the nogood a-list, and one (instal 1 -nogood-set) to do tie real work. 'i'le

latter function is called from within run-contra (Table 6-21).

- -, .*A



244 CtIATr IX SixCINC

ITic function choose-culprit (TFable 6-27) has changed a bit, to allow thc return of the
flags NOefer and @punt in place of a culprit. Also, a contradiction can involve several cells of
the same node, and if the culprit is identified by returning a cell other than one of the premises, it
isn't enough to tcst that it is in the samei node as a premise, for that may not uniquely identify the
intended culprit. Instead, if an alias is Supplied dien its trtuc-supplicr must be one of die prcmises.
Tlo aid in this discrimination, a name is printed in the message as an alias only if it is suitable for
identifying a culprit. .

-r-A A& 1.k



§ 6.3.20 The New improved Implemeniation 245

(statistics-counter awaken "Awakenings")
(statistics-counter awaken-added "@ADDED awakenings")
(statistics-counter awaken-rorget 'FORGET awakenings")
(statistics-counter awaken-nogood "@NOGOOD awakenings")

(defun awaken (cell reason)
(require-cell cell)
(statistic awaken)
(let ((con (cell-owner cell)))

(cond ((not (null con))
(require-constraint con)
(let ((rulearray (select! reason

((@added)
(statistic awaken-added)
(ctype-added-rules (con-ctype con)))
((erorget)
(statistic awaken-forget)
(ctype-forget-rules (con-ctype con)))
((@nogood)
(statistic awaken-nogood)
(ctype-nogood-rules (con-ctype con))))))

(dolist (rule (aref rulearray (cell-name cell)))
(or (bit-test (rule-id-bit rule) (con-queued-rules con))

(do ((tr (rule-triggers rule) (cdr tr))
(rebelp ()

(or rebelp
(let ((v (aref (con-values con) (car tr))))

(or (eq (cell-state v) @rebel)
(eq (cell-state v) @dupe))))))

((null tr)

(cond (rebelp (enqueue (list rule con reason)
*rebel-queue.))

(t (enqueue-rule rule con reason))))
(or (node-boundp (aref (con-values con) (car tr)))

(return))))))))))

(defun awaken-all (cells reason &optional (exception () exceptlonp))
(and exceptionp (require-cell exception))
(dolist (cell cells)
(require-cell cell)
(and (not (eq cell exception))

(awaken cell reason))))

TA1IE 6-28. Awakcning of Rules.

- ~. . . .



246 CIIApT'R'.r SIX FI"I:mcIiNCY

6.3.21. Awakening Selects Only Ielevant Rules for Queuing

The rule-array structure for constraint-types is a pre-compilcd catalogue indexing for each pin
and each reason fir awakening which rules should be run. All that awaken (Fable 6-28) need do

is check that the given cell has an owner, select the appropriate array from the constraint's type, and

index into die array according to the cell's pin-number, and voila! all the relevant rules are in hand.

The rules could simply be enqucued on *van i I Ia-queue* and the system would work.
I lowever, an attempt is made to avoid enquCuing rules whose triggers do not all have values. (This

situation might change between the time the rule is enqueued and the time it is dequeued, but if
that occurs the rule will he queucd anyway when the other triggers gain values.) Also, if any trigger
is a rebel %alue then tie rule is put on the low-priority * rebel -queue* on the intuition that one

should compute values that have certain support in preference to those that do not (this can only
occur anyway if contradictions have been deferred).

The finction awaken-al l awakens a list of cells for a specified reason, but will avoid
awakening a particular cell if that is given as a third argument. iis is generally used to awaken all
the cells of a node except that which generated the value.

.1



§ 6.3.22 The New iprmved Implemenlalion 247

(statistics-counter forget "Values forgotten")

(defun forget (cell &optional (source () sourcep) (via () viap))
(require-cell cell)
(and (eq (cell-rule cell) *constant-rule*)

(lose "Illegal to FORGET the constant -S." cell))
(and sourcep (require-cell source))
(and viap (require-cell via))
(statistic forget)
(ctrace "Removing -S from ~S-:[~3,~; because -:[of S-"]S]."

(cell-contents cell)
(cell-goodname cell)
sourcep
(and viap (not (eq via source)))
(and viap (not (eq via source)) (cell-goodname via))
(and sourcep (cell-goodname source)))

(select! (cell-state cell)
((@friend)
(setr (cell-contents cell) ())
(setf (cell-rule cell) ()
(setf (cell-state cell) @slave))

((@rebel)

(setr (cell-state cell) @slave)
(decrement (node-contra cell))
(awaken cell @added)
(let ((fcellsets '()))

(dolist (c (rep-cells (cell-repository cell)))
(cond ((and (eq (cell-state c) @dupe)

(eq (cell-contents c) cell))
(seLf (cell-state c) @slave)
(awaken c @added)
(push (cons c (forget-consequences c)) fcellsets))))

(dolist (q fcellsets)
(dolist (f (cdr q))

(forget f cell (car q))))))
((@king)
(do ((x (node-cells cell) (cdr x)))

((null x)
(forget-friendless-king cell))

(cond ((eq (cell-state (car x)) @friend)
(usurper (car x))
(setf (cell-contents cell) ()
(setf (cell-rule cell) ())
(setf (cell-state cell) @slave)
(or (zerop (node-contra cell))

(dolist (c (node-cells cell))
(and (eq (cell-state c) @rebel)

(enqueue (list @node c (car x)) .contra-queue*))))
(return)))))

((@slave @puppet @dupe))))

TABLU:6-29. Forgcuing a Cells Value and Its Consequences.

.__ _ ,



248 CuIArn- SIX ITICiIINCY

6.3.22. Forgetting a Cell's Value Lets Friends (Or Rebels) Step In

Whcn a Cell's Value is forgotten, the "begging" process donc in previous versions of the system
necd not bc performed. It is not necessary to bcg a rule to compute a value for its output pin, be-
cause it will do so when it is good and ready and has all its triggers; and ulic valuc, once computed,
will not he lost because every cell can have a value. (l['he exceptions arc rules with no triggers-they
arc invoked when the constraint is generated, or when the Status Of a nogood set changes if they arc

&nog ood or &nog oodbeg rules. Also, a constraint-type's' c type - forg et- rul1es array will
prove very useful for explanation purposes.)

On the other hand, when a Supplier ccli's value is forgotten and another ccii of the node has
a value, the second cell may inmediately step in as the new supplier for the node (this is the ad-
vantage of recording multiple support for %alues), and avoid further perw urbat ions of tie network.

If the new value is different, however (prmvided by a fornicr rebel), then ruies need to be awakened
on the newly added trigger value. TIherefore, paradoxically. the rorget function only performs
awakenings for the reason @added!



§ 6.3.22 The New Impruvoel Implmealion 249

(defun forget-consequences (cell)
(let ((fcells ,()))

(and (cell-owner cell)

(doarray (v (con-values (cell-owner cell)))
(select! (cell-state v)

((@king @friend @rebel)
(and (not (eq v cell)) (member (cell-name cell)

(rule-triggers (cell-rule v)))
(push v fcells)))

((@slave @puppet @dupe)))))
rcells))

(defun retract (cell)
(*retract (cell-true-supplier cell))

(run?))

(defun *retract (cell)
(require-cell cell)

(ctrace "Retracting the promise ~S." cell)
(forget cell))

(defun change (cell value)
(require-cell cell)

(require-integer value)
(let ((s (cell-true-supplier cell)))

(let ((rule (cell-rule s)))

(cond ((not (or (eq rule ,default-rule*)
(eq rule *parameter-rule.)))

(lose "Supplier of -S is not a DEFAULT or PARAMETER." cell))
((or (not (*torbiddenp value s))

(y-or-n-p "That value is contradictory; do it anyway?"))
(*retract s)
(process-setc-work () rule value s)
(run?))))))

TABLE 6-30. Rclracting a Value. and Tracing of Consequences.L]
The actions taken when a ccll's value is forgotten depends on the state of the cell. If it is a

slavc, puppet, or dupe, then nothing need be done, as it has no valuc. (It might seem at first that
such it cell should not be forgottcn in the first place. Ilowcver, if x was computed from triggers y
and z, and y had z as a trigger, and then z is retracted, then when z is.forgotten both y and
x must he forgotten. If y is forgotten, then x is recursivcly forgotten; it may then bccome, say, a
slave. Then x may be lorgotten again on account of z.)

If the cell to be fo gottcn is a friend, then its value quietly disappcars and it becomes a slave to
die king. No other cell is affected. If it is a rebel, then it and all its dupes become sliaves. Their rules
must be awakened for reason @added because they all suddenly become aware of the value of the
king. (Such awakened rules are not rtl at once-merely queued for later processing. This is iipor-
tant to tile integrity of the system-, the forgetting proccss must coml~lete before any rules are run to

ensure that all computed quantities have well-founded support. (Well- undedness is not tile same



250 CIIAPrER Six EI.CIENCY

thing as consistency- it merely means that a value is correctly derived from premises. Thc premises
need not be consistent, however, for computed values to be well-founded. Indeed. contradictions
are detected by the very fact that two well-founded values conflict. Conflicting values th, are not
well-founded are not informative.)

If a king is to be forgotten, then a major upheaval occurs. If the king has a friend, then the
friend steps into its place. Th'is is the most desirable alternative because the primary value of the
node does not change, and slaves need not be bothered. Thc friend usurps the throne, and if there
are any rebels then contradictions tasks for the conflict between the fonner friend and the rebel
must be enqucued.

I

!1

~I



§ 6.3.22 The Ne' hIproved hlplementation 251

(defun forget-friendless-king (cell)
(require-cell cell)
(dolist (nogood (cdr (assoc (cell-contents cell) (node-nogoods cell))))

(do ((ng (cdr nogood) (cdr ng))
(unique-loser 0))

((null ng)
(and unique-loser

(awaken-all (rep-cells unique-loser) @nogood)))
(and (or (not (node-boundp (rep-supplier (caar ng))))

(not (equal (node-value (rep-supplier (caar ng)))
(cdar ng))))

(if unique-loser
(return)
(setq unique-loser (caar ng))))))

(let ((fcellsets '()) (rebel ()))
(dolist (c (rep-cells (cell-repository cell)))
(select! (cell-state c)

((eking @dupe))

((@slave) (push (cons c (forget-consequences c)) fcellsets))
((@rebel) (setq rebel c))
((@friend) (lose "Already established that -S had no friends." cell))
((@puppet) (lose "@KING -S and @PUPPET -S in same node." cell c))))

(cond ((null rebel)
(seLf (cell-contents cell) ())
(setf (cell-rule cell) ())
(setf (cell-state cell) @puppet)
(awaken-all (node-cells cell) enogood))
(t (usurper rebel)

(setf (cell-contents cell) ())
(setf (cell-rule cell) ()
(setf (cell-state cell) @slave)
(decrement (node-contra cell))
(awaken cell @added)
(dolist (c (rep-cells (cell-repository cell)))

(select! (cell-state c)
((@slave) (awaken c @added))
((@king))
((@rebel)
(cond ((equal (cell-contents c) (cell-contents rebel))

(setr (cell-state c) @friend)
(decrement (node-contra cell)))

(t (enqueue (list @node c rebel) *contra-queue*))))
((@dupe)
(and (equal (cell-contents (cell-contents c))

(cell-contents rebel))
(setf (cell-state c) @slave)))

((@puppet trriend)
(lose "Impossible cell state for -S." c))))))

(dolist (q fcellsets)
(dolist (f (cdr q))

(forget f cell (car q))))))

TAILI:6-31. Forgetting ai Fricndls King (Very 1hairy!).



252 CIIAPfFR SIX Hi:IFCI'NCY

Ifa king to be forgotten has no friends, then several things happen (performed by the function

forget-friendl ess-k i ng in Table 6-31). First of all, it is the king that affect nogood sets
(nogood sets being per-node instead of per-cell), so if a king disappears then all the nogood sets of
the node for the disappearing value must be checked. If all the other nodes but one in a nogood set
have their associated values, then the disappearance of this king might unblock an assumption for
the lone node not having its paired Value: rules for that node (called the un i que- loser in the

code) must be awakened.

After the nogood awakenings are taken care of. then all the consequences of forgetting the
king must be cnumerated. The iariablc fcel I sets is a list of buckets: each bucket is headed by
a slae of the king, and contains immediate consequences of that slave. lhese consequences will
be Uhrgotten in turn. but not until the state of the current node has been resolved. (It was much
easier to write the forget function if it could be assumied that every node encountered was in
a consistent state, rather than in a half-forgotten stale.) The finction forget-consequences
(Table 6-30) enumerates the consequences of a cell by examining all the pins of that cell's con-
straint and finding those pins for which the given cell was a trigger. (By the way, this enumeration
of consequences is also done when a rebel is forgotten--see Table 6-29.)

While the consequences are being enumerated, it is noted whether there is any rebel. If there
is not, then the king becomes a puppet, and the node loses its value, whereupon @nogood rles

must be given a chance to run. ('his would be the obvious place to run @forget rules, but, as
already noted, this is unnecessary.) Otherwise, one rebel is chosen arbitrarily (the last one seen) to
become the new king. It usurps the old king, which becomes a slave. The total number of rebels
for the node is decreased by one. Then every other cell of the node must be examines. Slaves are
awakened to the new value. Other rebels either become friends (in which case the count of rebels

is decremented) or remain rebels (in which case a contradiction wilh the new king is enqucued).
I )upes of rebels which are to become friends are turned into slaves: they need not be awakened, as
they already knew of the "correct" Nalue. Puppets cannot occur in node which has a value, and by
supposition the old king was friendless, so no friends can be encountered.

The function retract (Table 6-30) is now the user interface to the retraction mechanism.
It calls .retract to do the work on the given cell's true-supplier (in that way the user
can say (retract centigrade) to specify retraction of the default cell connected to
centigrade, for example). Then run? is called to allow queued tasks to be 1)rocessed.

'[he function change will change the value of i defimult or parameter cell. If the value is
forbidden by a nogood set, it asks the user before blundering onward. It then retracts the old value,
installs the new one (by pretending to do a se tc-type operation). and then runs the task scheduler.
('Ilbis ilnplementation is extremely simple-minded. Although it checks the nogood sets, if the value
is found to be contradictory it does not immediately enqucue a contradiction on the basis of the
nogood set (which would not be hard to do). Instead, the computation will truly blunder onward



§ 6.3.23 The New lmpnLed Implemcntalion 253

(defmacro the (x y) .(.the ',x ,y))

(detun .the (name con)
(require-constraint con)
(or (lookup name coil) (lose -S has no part named -S." coil name)))

(defun lookup (name thing)
(require-constraint thing)
(let ((names (ctype-vars (con-ctype thing)))

(cells (con-values thing)))
(let ((n (array-length names)))

(do ((j 0 (+ j 1)))
((= j n) )

(and (eq (arer anames j) name) (return (aref cells j)))))))

rAII.i 6-32. Rlcfcrring to Pins Using the.

until the contradiction is rediscovcred. I was feeling lazy the day I wrote this code. A more
complicated idea would be to take advantage of the fact that a value was not being retracted, but
Illerely clanging. This would invole rinning rules while the forget process was only halfdone,
and would require great care. I Iowevcr, it is certainly what people do when adjusting constrained
values.)

6.3.23. The 1 ookup Functions Scans the Constr:iint-types's va rs Array

The the macro, and its utility finction *the, are now primarily for user interface since the
implementation now deals internally with pin-numbers rather than pin-names. "lie l ook up func-
tion scans the vars array of the constraint-type, and if the name is found returns the corresponding
component of the constraint's values array.

-. S



254 CIIAPIIER SIX EFCIENCY

(statistics -counter equatings "Number of calls to ""

(defun ==(celli cell2)
(require-cell celII)
(require-cell cell?)
(statistic equatings)
(let ((xi (memq cell (cell-equivs cell?)))

(x? (memq cell? (cell-equivs ceill))))
(cond ((or x1 x2)r

(or (and x1 x2 (eq (cell-repository celII) (cell-repository cell?)))
(lose "EQUIVS lists not consistent for -S and -S." celli cell?)))

((not (eq cell cell?))
(push ceill (cell-equivs cell?))
(push cel12 (cell-equivs ceill)))))

(or (eq (cell-repository celli.) (cell-repository cell?))
(let ((ri (cell-repository celli))

(r2 (cell-repository cell?))
(cb1 (nodo-boundp celli))
(cb2 (node-boundp cell?)))

(let ((r (merge-values celli cell?))
(rcells (append (rep-cells ri) (rep-cells r2))))

(let ((newcomers (if cbl (if' cb? I() (rep-cells r2))
(if cb? (rep-cells ri) '))

(xr (if (eq r ri) r2 ri)))
(set? (rep-cells r) rcells)
(dolist (cell (rep-cells xr)) (setf (cell-repository cell) r,)
(let ((l'cells (alter-nogoods-rep xr r)))

(setf (rep-nogoods r)
(merge-nogood-sets (rep-nogoods r) (rep-nogoods xr)))

(awaken-all fcells Qnogood))
(awaken-all newcomers @added) (run?)
'done))))

TAHIEr 6-33. Equating of Cells and Recording EqUatings Fxplicitly.



§ 6.3.24 The New Improved hnplementation 255

6.3.24. Equatings are Recorded Explicitly and Initialize Links

When an equating is done (using ==), it must be explicitly recorded even if it is redundant

by transitivity. (See Table 6-33.) If this exact cquating between these exact two cells has already

been done. then it need not be recorded twice; otherwise each cell is added to the other's equ i vs

list. (Therefore the cquatings are recorded redundantly, in that each cqUtting is recorded twice,

onc in each cell. This is mostly for pleasant symmetry and error-checing, and is not crucial to the

implementation.)

Once this is done, then the rest of the work is relevant only if the cells are currently of

two different nodes (determined by comparing their repositories). If they are of different nodes,

then merge-values is called to compare the values. In this version, merge-values will not

only compare the values and detect contradictions, but also rearrange the cell links and do other

housekeeping. It returns as its value the repository of the node which is to provide the supplier for

the merged node. llie rest of == is pretty much as before. The set of newcomers is determined,

the node structure is updated, the nogood sets are merged, cells may be awakened on account

of the nogood sets, and the newcomers are awakened (they could be awakened right after they

are determined, for awakening merely enqueucs now; but I was lazy and left the code similar to

previous versions -it doesn't hurt).



256 CIIAPI-R SIX HiFICIINCY

(defun merge-values (ceI1 ce112)
(require-cell cellt)
(require-cell cel2)
(let ((ri (cell-repository ce.ll))

(r2 (cell-repository cellZ)))

(cond ((not (node-boundp celll))
(let ((s (rep-supplier ril)))

(or (eq (cell-state s) @puppet)
(lose "Valueless node had a non-ePUPP[T supplier -S." s))

(setf (cell-state s) @slave))
(point-links-toward ce1ll)

(setf (cell-link celll) cell2)
r2)

((not (node-boundp cell2))

(let ((s (rep-supplier r2)))
(or (eq (cell-state s) @puppet)

(lose "Valueless node had a non-ePUPPET supplier -S." s))
(setf (cell-state s) @slave))

(point-links-toward cell2)

(setf (cell-link cell2) cell1)
rt)

(t (let ((r (cond ((eq (node-rule cell) *consLant-rule*) ri)

((eq (node-rule cell2) *constant-rule*) rZ)

((ancestor cell1 cell2) ri)
((ancestor cell2 celli) r2)
((plusp (rep-contra r2)) rl)
(t r2))))

(if (eq r rl)
(merge-two-values r r2 cellt cell2)

(merge-two-values r rt cell2 celll)))))))

TAl.IH.6-34. Merging Valics and Arranging Cell litiks.

The function merge-values ('able 6-34) is responsible for deciding which node will
provide the repository (and thus the supplier) for the merged node. It is also reponsible for install-

ing a new ce!l link. The new link will always be between dle two cells given to = =- this guarantces

that links follow paths laid down by explicit cquatings. My initial impulse was to link the deposed
supplier to the surviving supplier, because then all the other links need not he changed to preserve
the properlty tha tie links lead eventlually to the supplier. I lowever, this fails to preserve the
property of following explicit equatings. The solution is that the gixen cell of the node not provid-
ing the repository Must Usurp its own supplier. Then link paths froin all cells of that node will
lead to that given cell, and thence to the other givcn cell, and so to the sufr i% ing supplier. "lie
function point-l inks-toward is used instead of usurper (see Table 6-19 (page 231)) to
avoid changing the cell states (it doesn't nluch matter in the cases occuring in Table 6-34, because

die deposed supplier has been made into a slave).

iJ



§ 6.3.24 The New Improved Implementation 257

(derun merge-two-values (r xr cell xcell)
(let ((val (cell-contents (rep-supplier r))))

(cond ((and (zerop (rep-contra xr))
(equal (cell-contents (rep-supplier xr)) val))

(setf (cell-state (rep-supplier xr)) @friend))

(t (ctrace "Contradiction when merging -S and -S." cell xcell)
(dolist (c (rep-cells xr))

(select! (cell-state c)
((@slave)
(cond ((not (equal (cell-contents (node-supplier c)) val))

(setf (cell-state c) @dupe)
(setf (cell-contents c) (rep-supplier xr)))))

((@rebel @king @rriend)
(cond ((equal (cell-contents c) val)

(setf (cell-state c) @friend))
(t (sett (cell-state c) @rebel)

(increment (rep-contra r))

(enqueue (list @node c (rep-supplier r))
*contra-queue*))))

((@dupe)
(and (equal (cell-contents (cell-contents c)) val)

(setf (cell-state c) @slave)))
((@puppet) (lose "Puppet -S in a bound node." c)))))))

(point-links-toward xcell)

(setf (cell-link xcell) cell)
r)

TAHI.i.'6-35. Merging Two Nodes with Values and Handling ConflicLs.

If both cells have values, then one is chosen on the basis of certain criteria, some of them
leuristic. Constants are preferred for surviving kings. Barring that, the avoiding of circular de-
pendency structures is paramount. If that does not resolve the issue, then nodes with internal
contradictions are less desirable than consistent nodes. Once a repository has been chosen, then the
rest of the work is handed off to merge - two-values (Table 6-35).

If the node whose king is being deposed (represented by xr and xcel 1) is free of con-
tradiction. and the two values agree, then the situation is particularly easy and is handled as a
special case. The deposed king becomes a a friend of the surviving king, and his old friends and
slaves aitolnatically become friends and slaves of the surviving king. and that is that. Otherwise
a contradiction has Occurred-either the deposea king or one of his rebels must disagree with the
surviving king. All the cells of the x r node are processed. Slaves to a disagreeing old king become

dupes. (Note that tile phrase (cel l-contents (node-suppl ier c) ) is used rather than
the seemingly equivalent (node-value c): this is done because node-value performs an
important error-check that must be circumvented here because the node is temporarily in a bad
situation.) Rebels, friends, and tile king may become either friends or rebels, depending on the
values involved. I)upes may becolne slaves if their associated rebels become friends. When all this
is done. and contradictions have been enqueued, the cell links are set up and the chosen repository
returned.



258 CI IAPlI;R SIX l~(FTIC..4(Y

(def un alter-nogoods-rep (xr r)
(let ((fcells'))

(dolist (bucket (rep-nogoods xr))
(dolist (nogood (cdi' bucket))
(let ((z (assq r (cdr nogood)))

(xz (assq xi' (cdr nogood))))
(cond ((null xz)

(lose "funny nogood set ~S for bucket -S of repository -S."
xr (car bucket) nogood))

((null z)
(setf (cdr nogood)

(add-nogood-pair r (cdi' xz) (delassq xr (cdr nogood)))))
((equal (cdr z) (cdr xz))
(setf (cdr nogood) (delassq xi' (cdr nogood))))

(t (dolist (pair (cdr nogood))
(setq fcells (append (rep-cells (car pair)) fcells))
(let ((buck (assoc (cdi' pair) (rep-nogoods (car pair)))))

(or buck (l ose *Noiex is tent bucket: -S. " pair))
(setf (cdr buck) (delq nogood (cdi' buck)))
(or (cdr buck)

(setf (rep-nogoods (car pair))
(delrassq '() (rep-nogoods (car pair)))))) ))

fcells))

(defun add-nogood-pair (rep val nogoodlist)
(require-repository rep)
(cond ((null nogoodlist) (list (cons rep val)))

((node-lessp (car (rep-cells rep)) (car (rep-cells (caar nogoodlist))))
(cons (cons rep val) nogoodlist))
(t (cons (car nogoodlist) (add-nogood-palr rep val (cd' nogoodlist))))))

(defun nerge-nogood-sets (si s2)
(cond ((null si) s2)

((null s2) sI)
(<(caar Si) (caar s2))

(cons (car si) (merge-nogood-sets (cdr si) s2)))
((> (caar Si) (caar s2))
(cons (car s2) (merge-nogood-sets si (cdr s2))))

(t (cons (cons (caar sI) (nerge-nogood-buckets (cdar SI) (cdar s2)))
(merge-nogood-sets (cdi' si) (cdi' s2))))))

(defun merge-nogood-buckets (bi. b2)
(cond ((null bi) b2)

((member (car bi) b2) (mnerge-nogood-buckets (cdr bi) b2))
(t (cons (car bi) (merge-nogood-buckets (cdr bi) b2)))))

TABI.E36-36. Altering and Merging of Nogood Sets.

Trhe code for altering and merging (if nogood sets is unchanged, because thec representation of
nogood sets is the samce. For completeness thc code is reproduced here in Table 6-36.

gg"mr ~ m



§6.3.24 The New himproved Implemeiifalion 259

(defun ancestor (cellt cellZ)
(require-cell cell)
(require-cell cell2)

(or (eq (cell-repository celli) (cell-repository cell2))
(select! (cell-state cell2)

((@king @rebel) (ancestor-triggers celll cell2))
((@friend) (ancestor-triggers celli (node-supplier cell2)))
((@slave) (and (node-boundp ce)l2)

( ancestor-triggers cell11 ( node-supplIier cel112))
((@puppet) ~
((@dupe) (ancestor-triggers celli (cell-contents cell2))))))

(defun ancestor-triggers (celli cell2)
(require-cell celli)
(require-cell cell2)
(do ((tns (rule-triggers (cell-rule cell12)) (cdr tns)))

((null tns) ())
(and (ancestor celli (aref (con-values (cell-owner cell2)) (car tns)))

(return t))))

TmniE6-37. Testing Ancestorhood.

The tracing of ancestors by the fuinction ancestor is similar in spir-it if not in impleinenta-
tdon to previous versions. 'The code appcars in Table 6-37. Note that at dependency chain might
actually wind through a single node more than once, if the node containls rcbels. It might wind in
through a dupe, out throtugh a rebel; in through a slave, out through the king: in through another
dupe, and so on. TIhe low priority accorded to rules triggered by rebels and dupes is intended to
avoid such occurrences, but it can legitimately happen.



260 CI IAP'rI1+R SIX EiHiICII:NCY

(defun dissolve (cell) (*dissolve cell) (run?))

(defun *dissolve (cell)
(require-cell cell)
(fast-expunge-nogoods cell)
(let ((supplier (node-supplier cell))

(cells (node-cells cell)))

(ctrace "Dissolving -(-<;/I ~2,72:;S->~t,
(rorlist (c cells) (cell-goodname c)))

(dolist (c cells)
(setf (cell-link c) ())
(set? (cell-equivs c) '())
(or (eq c supplier)

(let ((r (gen-repository)))

(select! (cell-state c)
((@rriend @rebel)
(setf (ceil-state c) @king))
((@dupe @slave)

(or (nodo-boundp supplier)

(set? (cell-state c) @puppet)))
((@king @puppet)

(lose "@KING or @PUPPET -S was not the supplier." c)))
(setf (rep-supplier r) c)

(setf (cell-repository c) r)
(push c (rep-cells r)))))

(setf (node-cells supplier) (list supplier))

(setf (node-contra supplier) 0)

(and (node-boundp supplier)
(let ((fcells '())) 4

(dolist (c cells)

(select (cell-state c)

((@slave @dupe)
(setr (cell-state c) @puppet)

(setq fcells (nconc (forget-consequences c) fcells)))))

(dolist (f fcells) (forget f)))))

'done)

TABnll6-38. Dis. shing a Nxle.

6.3.25. Node Disconnections Can be Done by Dissolving alnd Reconnecting

When a node is dissolved. things are a little complicated, because friends and rebels can be-

coeic kings. On the other land, the former nonsense about restoring values to dcfaulti and constant
cells pleasantly vanishes here. The finction d i ssol ve (Table 6-38) Icars all die cells of a node

apart and generates new repositories for each one but (he supplier. (A supplier does not have to be

chosen artificially for a valicles node. because there is always a sulpplier, even if only a puppet.)

The cell links and recorded equivalences are oblilerated. If die node had had a supplier, then any

cells which had been slaves or dupes will no longer have values, and so are subject to the forgetting



§ 6.3.25 The New Improved Implemeniation 261

process. "hercfore they arc left marked as slaves or dupes until late in the process, until their

consequences have been recorded for forgetting, whereupon they become puppets.

Si



262 CIIArrIUR SIX Fi:i:ICIINCY

(defun detach (cell) (*detach cell) (run?))

(del'un *detach (cell)
(require-cell cell)
(dolist (c (cell-equivs cell))
(set? (cell-equivs c) (delq cell (cell-equlvs c))))

(set? (cell-equivs cell) )
(reconstruct-node cell))

(defun disconnect (cell) (*disconnect cell) (run?))

(defun *disconnect (cell)
(require-cell cell)
(dol ist (c (cell-equivs cell))

(set? (cell-equivs c)
(unionq (reinq c (cell-oquivs cell))

(delq cell (cell-equivs c)))))
(setf (cell-equivs cell) )
(reconstruct-node cell))

(defun disequate (Celli cell2) (*disequate Celli cell?) (run?))

(defun *disequate (Celli cell2)
(require-cell Celli)
(require-cell cell?2)
(and (eq (cell-repository Celli) (cell-repository cell?))

(let ((xl (memq Celli (cell-equivs cell?)))
(x2 (rnemq cell? (cell-equivs Celli))))

(cond ((and x1 x?)
(setf (cell-equivs Celli) (delq cell? (cell-equivs Celli)))
(setf (cell-equivs cell?) (delq Celli (cell-equivs cell2)))
(and (or (eq Celli (cell-link Cell2))

(eq cell? (cell-link Celli)))

(reconstruct-node Celli)))
((or x1 x2)
(lose "Inconsistent EQUIVS lists for -S and -S." Celli cell?)))))

'done)

(defun reconstruct-node (cell)
(require-cell cell)
(let ((equivs '())

(erun-flag. )
(dolist (c (node-cells cell))

(dolist (e (cell-equivs c))
(push (cons c e) equlvs)))

(*dissolve cell)
(dolist (q equivs)

(,= (car q) (cdr q))))
(run?))

TAI~i :6-39. Dciching, Discunnucling. aind Disequlaling Clls.

Rather than inmplemelnting all thc special cases for disconnectinlg, detaching, aild discquating,
which are rather horrendous in their details, for case of im~plCIrCIIiation I borro)wed anl idea ff0111



§ 6.3.25 The New Improved Implementation 263

L. Peter Deutsch: to change the connections of just a few cells, simply dissolve the whole node and
then rc-asscrt all thc equatings except the ones to be abolished. This carries a time penalty, but
makes implementation much easier.

Table 6-39 contains the code for detach, disconnect, and disequate. The first is

defined to pretend that all equatings involving a given node had never taken place. The fimction
*detach removes the cell from the equivs lists of all cells it had been equated to, erases the
equatings of the given cell. and then calls recon st ruc t-node to do the dirty work.

'lle function disconnect is defined to remove itself from the node but otherwise leave
the node intact, so it muist add new equatings among all the things to which it had formerly been
connected, to ensure that they do not become disconnected. The work Function *detach removes

the given cell fiom equivs list., set-unions its own equivs list into its former buddies' equivs lists,

erases its own connections, and then calls reconst ruct- node.

'llIe function disequate must undo any equating between the two given cells. Nothing
need be done if they had not already been equated, but if they had then *d i sequate deletes

each from the other's equivs list (after some error-checking), but only needs to reconstruct the node
if deleting the equating affected the node's cell-links structure.

'[he interesting part is in reconstruct-node. It is defined to take a node whose equivs
lists have been messed with and make the node structure consistent with those lists. It makes up a
list of equatings to be done, dissolves the node, and then calls == to do each equating. (Because
the equatings are recorded redundantly, as described in §6.3.24, twice as many calls as necessary
arc made to ==" but this doesn't hurt anything.) 'Ihis is done with *run-fl ag* bound to ()
to prevent tasks from running until the node is reconstructed-no use in computing values on the
basis of a false network structure!

' i 1



264 CIIAI"I'IUIR SIX FFII I+NCY

(defmacro mark-node (cell) '(setf (node-mark ,cell) t))
(defmacro unmark-node (cell) (setf (node-mark ,cell) ())

(defmacro markp (cell) '(node-mark ,cell))

(derun fast-expunge-nogoods (cell)
(require-cell cell)
(rast-expunge-nogoods-mark cell)
(fast-expunge-nogoods-unmark cell))

(derun fast-expunge-nogoods-mark (cell)
(require-cell cell)
(cond ((not (inarkp cell))

(mark-node cell)
(and (not (null (node-nogoods cell)))

(awaken-all (node-cells cell) @nogood))
(setf (node-nogoods cell) '())
(dolist (c (node-cells cell))

(and (cell-owner c)
(doarray (v (con-values (cell-owner c)))

(fast-expunge-nogoods-mark v)))))))

(derun fast-expunge-nogoods-unmark (cell)
(require-cell cell)
(cond ((markp cell)

(unmark-nodo cell)
(dolist (c (node-cells cell))

(and (cell-owner c)
(doarray (v (con-values (cell-owner c)))

(fast-expunge-nogoods-unmark v)))))))

rAIF.i 6-40. Fast Exptnging of Nogood Infornation.

When a node is dissolved, this implementation follows previous implementations in simply

expunging all the nogood information in the entire network. Now that premises computes

the precise equi~alences involved in a contradiction, it would not be so difficult to add this infor-

mation to a nogood set when it was forlned, and to cross-reference nogood sets in each node

containing an equivalence mlentioled in a nogood set. Then when a node was dissolved, only

relevant nogood sets need be expunged. lowever, this involves saving a great deal of information

as data structures, which may not be worth it, and so I have not investigated this technique. Note

that fast-expunge-nogoods-mark (Table 6-40) awakens every cell it encotintels for reason
@nogood , which can lake a while to process. For"tunately, there are not that many rules which

awaken on that condition.



§ 6.3.26 The New Improved Impllemenlation 265

(defmacro destroy (symbol) ,(*destroy ',symbol))

(defun *destroy (symbol)
(require-symbol symbol)
(and (boundp symbol)

(let ((val (symeval symbol)))
(cond ((cell-p val)

(cond ((and (globalp val) (eq (cell-name val) symbol))
(*detach val)
(makunbound (cell-id val))
(makunbound symbol))

(t (lose "Illegal re-declaration of -S." symbol))))
((constraint-p val)
(cond ((eq (con-name val) symbol)

(forarray (p (con-values val)) (*detach p))
(makunbound symbol))

(t (lose "Illegal re-declaration of -S." symbol))))
((or (constraint-type-p val) (repository-p val) (rule-p val))
(lose "Illegal re-declaration of -S." symbol))

(t (makunbound symbol)))))
'done)

TAI.r: 6-41. |)vstro)ing the Value of a Global Namne.

6.3.26. Iestroying a Variable or Constraint l)ctacs It from 1'vtrthing

At last we may discuss the function *destroy referred to in §6.3.9. It is used by create
and variable (Table 6-11 (page 217)) as well as by destroy ('Table 6-41). 'lhc function
*destroy takes a iSP symbol, and if that symbol has a value examines that value. If the value
is it cell, then the cell must be global and have the symbol as its name: otherwise the user must
be trying to destry one of the generated unique debugging id names. The cell is detached, and
tie symbol made to have no value (tile t iSt ftnction makunbound removes the value from a

Symbol). Similarly, if the valttc is a constraint, then if the symbol is the constraint's name, the

constraint's pins are all detached. It is illegal to destroy the name for a constraint-type, or the id for

a repository or rule. A name not used to name any of the system data structures may be destroyed.



266 CIIAPTI-K SIX EIIICIENCY

(defprim (adder +) (c a b)
(c (a b) (+ a b))
(b (a c) (- c a))
(a (b c) (- c b)))

(derprim (multiplier s) (c a b)
(c (a) (if (zerop a) 0 @dismiss))
(c (b) (ir (zerop b) 0 dismiss))
(c (a b) (* a b))
(b (a c) (if (and (not (zerop a)) (zerop (\ c a)))

(// c a)
@dismiss))

(a (b c) (if (and (not (zerop b)) (zerop (\ c b)))
(// c b)
@dismiss)))

(derprim (maxer max) (c a b)
(c (a b) (max a b))
(b (a c) (cond ((< a c) c)

((> a c) flose)
(t dismiss)))

(a (b c) (cond ((( b c) c)
(() b c) @lose)
(t dismiss))))

(defprim (minner min) (c a b)
(c (a b) (min a b))
(b (a c) (cond (() a c) C)

((< a c) @lose)
(t @dismiss)))

(a (b c) (cond ((> b c) c)
((< b c) flose)
(t @dismiss))))

(defprm (equality =) (p a b)
((p) (it (or (= p 0) (= p 1)) @dismiss @lose))
((p &nogoodbeg) () (resolve-among '(0 1)))
(p (a b) (it s a b) 1 0))
(b (p a) (if (: p 1) a @dismiss))
(a (p b) (if (: p 1) b dlsmilss)))

(defprim gate (p a b)
((p) (if (or (= p 0) (= p 1)) @dismiss @lose))
((p &nogoodbeg) () (resolve-among '(0 1)))
(p (a b) (if (= a b) @dismiss 0))
(b (p a) (if (= p 1) a @dismlss))
(a (p b) (if (= p 1) b @dismiss)))

TAB.1;6-42. Dfinition of Priinitivc Coistraint-typLs (i).

L

-.. :,.



§ 6.3.26 The New Improved Implementation 267

(derprim (lesser <) (a b)
((a b) (if (< a b).@dismiss flose)))

(derprim (lesser! !) (p a b)
((p) (if (or (z p 0) (- p 1)) @dismiss glose))
((p &nogoodbeg) () (resolve-among '(0 1)))
(p (a b) (if (< a b) 1 0)))

(defprim (lesser? ?) (p a b)
((p) (if (or (= p 0) (z p 1)) @dismiss flose))
((p &nogoodbeg) () (resolve-among 1(0 1)))

(p (a b) (if (< a b) @dismiss 0)))

(defprim (?lesser ?<) (a b)
((a &nogoodbeg) (b) (if (forbiddenp (- b 1)) @dismiss (- b 1)))
((b &nogoodbeg) (a) (if (forbiddenp (+ a 1)) @dismiss (+ a 1)))
((a b) (if (< a b) @dismiss @lose)))

(derprim (?lesser! ?<!) (p a b)
((p) (if (or (= p 0) (m p 1)) @dismiss flose))
((p &nogoodbeg) () (resolve-among '(0 I)))
((a &nogoodbeg) (b p)
(let ((guess (if p (- b 1) b))) (if (rorbiddenp guess) @dismiss guess)))

((b &nogoodbeg) (a p)
(let ((guess (if p (+ a 1) a))) (if (torbiddenp guess) @dismiss guess)))
(p (a b) (if (< a b) 1 0)))

(defprim (?lesser? ?<?) (p a b)
((p) (if (or (z p 0) (c p 1)) @dismiss flose))

((p &nogoodbeg) () (resolve-among '(0 1)))
((a &nogoodbeg) (b p)
(it (and p (not (forbiddenp (- b 1)))) (- b 1) @dismiss))

((b &nogoodbeg) (a p)
(if (and p (not (forbiddenp (+ a 1)))) (+ a 1) @dismiss))
(p (a b) (if (< a b) @dismiss 0)))

TABLE 6-43. D'finition of Primitive Constraint-types (ii).



268 CIIAPiIn.R Six EF:ICIANCY

(defprim (?maxer ?max) (c a b)
(c (a b) (max a b))
((c &nogoodbeg) (a) (if (forbiddenp a) a @dismiss))
((c &nogoodbeg) (b) (it (forbiddenp b) b @dismiss))

(b (a c) (cond ((< a c) c)

(() a c) flose)
(t @dismiss)))

(a (b c) (cond ((< b c) c)

(() b c) @lose)
(t @dismiss))))

(defprim (?minner ?rain) (c a b)
(c (a b) (in a b))
((c &ogoodbeg) (a) (if (forbiddenp a) a @dismiss))
((c &nogoodbeg) (b) (if (rorbiddenp b) b @dismiss))
(b (a c) (cond ((> a c) c)

((( a c) flose)

(t @dismiss)))
(a (b c) (cond (() b c) c)

((< b c) @lose)

(t @dismiss))))

(defprim signum (s a)
((s) (if (or (= s -1) (z s 0) (= s 1)) @dismiss @lose))
((s &nogoodbeg) () (resolve-among '(-1 0 1)))

(a (s) (if (ierop s) 0 @dismiss))

(S (a) (cond ((plusp a) 1) ((minusp a) -1) (t 0))))

(dorprim (assumption assume) (pin)
((pin &nogoodbeg) () (if (forbiddenp *info*) @dismiss *info*)))

(derprim oneof (pin)
((pin &ngoodbeg) () (choose-from *info.))
((pin) (it (member pir .info.) @dismiss @lose)))

(derprim firstoneot (pin)
((pin &nogood) () (choose-from *into*)))

TAIII .1 6-44. Dcfi nim "n (i Primiivei ('onstr;int-typs (iii).

6.3.27. IPrimiiive Constraints Are Ilnifornily I)efineId by defp rim

In Chapter Iive. the definition of inost primitivc constraints was done viit the de 'p rim con-

struct, hut tile strangc' constraint-types assumption, oneof, and r irs toneof werc defined
"'manually", that is, by jerry-rigging (lic rule and constraint-type structures. Ilere we have a inore

general do rp r im that can accommodate rules which dcpend oin nogood information.

The rori'iat of rule definitions was discussed in §6.3.13. Each rule specification has an optional

output pin-name and keywords, a list o " trigger pin-names, and a body. The definitions of adder,

multip1i ler, maxer, minner. equal ity. and gate appcal- in lable 6-42. They are pretty

.1 _ - . J i ;: " , - .. i i lii l=. .. " ' '' l ~ i i



§ 6.3.27 The Ne it Improved I plkienltlion 269

much as in previous versions, with three exceptons. One is that se tc and contradict ion
arc not used, but instead either an integer or one Of the two flags @lose and @dismiss is
computed. Another is that equal ity and gate each have a new rule, the second one. The first
rule of each states that p must be 0 or 1, or else a contradiction occurs. The second rule says that if
one of the two values 0 and I is forbiddcn by a nogood set. thcn the other one can be deduced and
tentaL.:scl. asserted. (The function resol ve-amorig checks the nogood sets. It does not really
do resolution-it merely checks whether tne unique value of a set is possible, and if so asserts it:
it is the %alue Ahich Aill cause resolution if it fCils.) The third exception is that it in place of the
iaine is a list of two S) nihols. then the first is the nalne and the second is the c Lype-symbol to
be used by tree- f rm when extracting an algebraiic expression frotn the netoirk. If no separate
ctype-symbol is supplied, the narme is used. (This feature is primarily to make the output
prettier. One might ask vh\ the name is not always used, for if one m ants adders to be called "+"

in algebraic forms One could always just use tie nane + instead of adder. The answer is that
the name is used for interacting with tile I ISP systen, and the IiSP system already uses the name
+ for something else. Thus this feature is a compromise with I ISi, yielded in exchange for all the
advantages using I ISP, provides.)

Table 6-43 defines some new primitive constraint-types. I)efinitions for them appeared in §6.1.
A lesser device enforces a numerical less-than relationship between its two pins a and b-its
rule signals a contradiction if this is not so. The ?I esser de ice is similar, but also will try a
heuristic guess at the value of one pin if tie other is known. The first two rules are assumption
(&nogoodbeg) rules which define the heuristic that in the absence of better information the two
pins might as well have adjacent integers as values. This device is usefil Ioir expressing geometrical
spacing constraints, for example. One might specify that one object must be somewhere to tie left
of (have an x-coordinate less than that of) another object; then in the absence of better information
they will be right next to each other. The form forb i ddenp is a predicate true ill' the given value
is disallowed by existing nogood sets.

The device types lesser! and lesser? are to lesser as equal I ty and gate are

to ==, in effect. Type lesser! provides ain extra pin p which specifies whether the lesser
relationship between a and p is true or false. lype lesser? uses not a biconditional but an
implication: if p is I then the 1 esse r relaonship holds, but if p is 0 the relationship may or
may not hold. The device types ? lesser ! and //.lesser! have llie samie relationships to the type
? 1 e sse r. (I have ftund that having three such versions of almost any constraint-type is msefil. A

more advanced constraint language might just atoniatically pnO ide e\ cry constrailnt-tlpe with two
extra pins p? and p which are initially assumed to be 1. This would be one way for a constraint



270 CIIAIYrlIR SIX EFFICIENCY

(det'un assume (value)
(let ((a (gen-constraint assumption (gen-name 'assumption)))

(seL' (con-info a) value)
(the pin a)))

(defun oneof (valuelist)
(let ((a (gen-constraint oneof (gen-name 'oneot'))))

(sett (con-info a) valuelist)
(the pin a)))K

(defun firstoneof (valuelist)
(let ((a (gen-constraint rirstoneof (gen-name 'firstoneof))))

(setf (con-info a) valuel 1st)
(the pin a)))

TABI 1 (-45. The assume, one of, anid f i rstoneof Constructs.

network to control itself-by turning thc p? pin on and Off to turn constrainils on and off. 5)

'Iheconstraint-typcs ?max er and ?m in ner (]'able 6-44) arc like ?I less er-cach is willing
to make a gucss on the basis of patial information. In this case, if' onC of a and b is knowni and
the other not, then c is assumed to hc the same ats the known~ pin.

The constraint-type s i g num illustrates a Situation where a pin is confined to a value set of
more than two elements. [hei pin s, must hc one Of -1, 0, or 1, reflecting the sign of thc pin
a. '[he first rule checks the value space: the. second allows deduction of a value if the other two
are forbidden; the third deduces a = 0 from a = 0; and the fourth is the ob~iOuls definition of
s ignum as a fuinction of a.

After these odd definitions, those of assumpt ion, oneof, and f i rs toneof are not very
surprizing. 'lihe one rule for assumption says that the rule need not he invoked Unless the out-
put pin has no value, in which case the assumed value is asserted unless forbidden.T'he first rule for
oneo f chooses among the possibilities and returns one (choose-f rom is like re sol 1 e -among

except that it always returns somte one choice or else performs resolution: resol ye-among will
fail to return a choice unless it is forced). The second rule checks that a value computed elsewhere
is in its value set.

The one nile for f i rstoneof is a &nogood rules rather than at &nogoodbeg rule. '[hat
means that it will let a nogood set stop a value, but not the output pin. It chooses a value onl the
basis of nogood sets alone. and then returns it. IfC the OUtput pin already has a value, it can jolly well
cause a contradiction and create at nogood set whereupon tie rule, when run again, will then admit

a different choice.

5. tLc Steels provides a simnilar facility in his constraint sysicin [Steels 19801, where by conivention every constraint
has an extra **enable" pin Mhe narne of ibis pin is the namre or the colistraint itself, and so he %peaks or using the
constarint itself as a value. I .iew the constraint and its enablc pin -Ls distinct things, and mecan something else by
using a constraint as a value. 'INi% is discussed in thc Conclusions chaptr.

'a-. '.asg ws



§ 6.3.27 The New Improved Implenteniation 271

The implementation of thc assume, oneof, and f i rstoneof constructs is pretty much
as in Chapter Five, except tial the rulcs involved nieed not bc explicitly awakened, the function
gen-constra int ('rabic 6-li (page 217)) Likes care of that.



272 CIIAI1IiR SIX EHwcilNCY

(defmacro defprim (namespec vars rules)
(let ((name (if (atom namespec) namespec (car namespec)))

(symbol (if (atom namespec) namespec (cadr namespec))))
'(progn 'compile

(declare (special ,name))
(setq ,name (make-constraint-type))
(setf (ctype-name ,name) ',name)
(setf (ctype-symbol ,name) ',symbol)
(setf (ctype-vars ,name) (array-of ',wars))
(set? (ctypo-added-rules ,name) (array-n ,(length wars)))
(set? (ctype-rorget-rtiies ,naine) (array-n ,(length vars)))
(seLf (ctype-nogood-rules ,name) (array-n ,(length vars)))
(defmacro ,(symbolconc name "-VARlNUM") (varname)

,(posq ',varname ',,vwars))
(defmacro ,(symbolconc name -IINDCFLLS") body

,(let ,',(forli1st (var wars)
*( ,(symbolconc var "-CELL')

(aref (con-values *me*) ,(posq var vars))))
,@body))

,@(do ((r rules (cdr r))
(bit I (lsh bit 1))
(del's 1() (cons *(der'rule ,name ,bit

,@(if (null (cddr (car r)))
(cons () (car r))
(car r)))

del's))) 4

((null r) del's))

,(,niame primitive))))

TABiu. 6-40. Definition o)f Pr-imitivL-s.



§ 6.3.27 77T New Improved Implemewafion 273

(defprim gate (p a b)
((p) (if (or (, p 0) (- p 1)) @dismiss @lose))
((p &nogoodbeg) () (resolve-among '(0 1)))

(p (a b) (if (= a b) @dismiss 0))
(b (p a) (it (= p 1) a @dismiss))
(a (p b) (if (: p 1) b dismiss)))

expands into:

(progn 'compile
(declare (spocial gate))
(setq gate (make-constraint-type))
(setf (ctype-name gate) 'gate)
(set? (ctype-symbol gate) 'gate)
(setr (ctype-vars gate) (array-of '(p a b)))
(seLf (ctype-added-rules gate) (array-n 3))
(sett (ctype-to'get-rules gate) (array-n 3))
(setf (ctype-nogood-rules gate) (array-n 3))
(definacro gate-varnum (varname)

,(posq ',varname '(p a b)))

(detmacro gate-bindcells body
,(let ((p-cell (arer (con-values *me*) 0))

(a-cell (aref (con-values *me*) 1))
(b-cell (aref (con-values *me*) 2)))

,@body))
(defrule gate !0 a (p b) (if (= p 1) b @dismiss))
(defrule gate 8 1) (p a) fit ( p 1) a Ndismiss))
(defrule gate 4 p (a b) (if (= a b) @dismiss 0))
(detrule gate 2 (p &nogoodbeg) () (resolve-among '(0 1)))
(derrule gate I () (p) (if (or (= p 0) (= p 1)) @dismiss flose))
'(gate primitive))

rA1 6-47. FpaifSion of the Dcfinition of gate.

Table 6-46 shows the new definition of the LISP macro defpriim. Among other things, it

assigns id-bits to each of the rules (each id-bit is a distinct power of two). It also defines two macros

namne- va rnum and name-b i ndcel 1, referenccs to which will be generated by defru I e. One

converts a pin-namc into a pin-nulnber, and the other generates the binding of names of tile fonn

pin-name-Ce 1 to ie corresponding cells, which is done in every rule. Using macros in this

way instead of a global data base causes the information to be transmitted correctly at either LISP

compile time or .ISP interpretation time. Table 6-47 shows the I ISP code into which the de fp r im

definition of gate expands.



274 CI IAPiIR SIX FI l:NCY

(d'etnacro defrule (typenane bit output-stuff' ti'igger-naies body)
(let ((rulenaie (gen-name typename 'rule))

(ctype (symeval typenanie))
(output-name (cond ((null output-stuff) )

((atom output-stuff') output-stuff)
(t (car output-stuff))))

(keywords (cond ((atom output-stuff') ())
(t (cdr output-stuff)))))

(require-constraint-type ctype)
*(progn 'compile

(declare (special ,rulename))
(derun ,rulename (*me*)

(let ((*rule* riulename)
(*info* (con-into *me*)))

(,(syinbolconc typenanle "-BINOCLLLS")
(let ((*outvars ,(if' output-name

(synibolconc output-name "-CELL")
M)

.§(forlist (var trigger-names)
'(,var (cell-value ,(symbolconc var "-CELL")))))

,body))))
(let ((rule (make-rule)))

(setq ,rulename rule)
(set? (rule-code rule) ',rulenaine)
(setr (rule-ctype rule) ,typenamne)
(set? (rule-outvar rule)

,(if output-name
'( ,(symbolconc typename "-VARNUt4") ,output-name)

M)
(set? (rule-triggers rule) '

(list @6(forlist (var trigger-names)
'(,(symbolconc typoname "-VARlNUt4") ,var))))

(set? (rule-bits rule)
,+(if (memq '&nogood keywords) l@rule-nogood 0)
(if (memq '&nogoodbeg keywords) @rule-nogoodbeg 0)))

(set? (rule-id-bit rule) ,bit)
,@(and output-name

,((push rule (are? (ctype-forget-rules ,typenamle)
(,(synibolconc typename "-VARNUM")
,output-name))))

,@(rorlist (var trigger-names)
,(push rule (are? (ctype-added-rules ,typename)

(,(symbolconc typename "-VARlNUM") ,var))))
,@(and (or (memq '&nogood keywords) (memq '&,nogoodbeg keywords))

'((push rule (are? (ctypo-nogood-rules ,typename)
(,(symbolconc typenanle "-VARNUM")
,output-name))))

'(,typename rule)

TAlL .1:6-48. [)fiiio n of RuL s.

Tablec6-48 shows thc ncw dcfnition of the l.ISP, mlacro) de f ruI e. It aiiangcs to create die rtice

data structulre and cataloguc it in the constraint-typc's rules tablcs.



§ 6.3.27 Tie Newv Improw'd Imitilcewalioti 275

(defrule gate 2 (p &nogoodbeg) ()(resolve-among '(0 1)))

expands into:

(progn 'compile
(declare (special gate-rule-69))
(defun gate-rule-69 (*me*)

(let ((*rule* gate-rule-69)
(*Info* (con-info *me*)))

(gate-bindcelis (let ((*outvar* p-cell)) (resolve-among '(0 1))))))
(let ((rule (make-rule)))

(setq gate-rule-69 rule)
(setf (rule-code rule) 'gate-rule-69)
(set? (rule-cLype rule) gate)
(set? (rule-outvar rule) (gate-varnum p))
(setr (rule-triggers rule) (list))
(setf' (rule-bits rule) 2)
(setf (rule-id-bit rule) 2)
(pushm rule (are? (cLype-forget-rules gate) (gate-varnum p)))
(push rule (are? (ctype-nogood-rules gate) (gate-varnum p))))

'(gate rule))

(defrule gate 1 () (p) (if (or, (= p 0) (~1)) @dismiiss @lose))

expands into:

(progn 'compile
(declare (special gate-rule-70))
(del'un gate-rule-70 (*me.)

(let ((*rule* gate-rule-70)
(sinfo. (con-info *me.)))

(let ( (p-cell (aref (con -valIues .me.o) 0))
(a-cell (are? (con-values *me*) 1))
(b-cell (are? (con-values .me.) 2)))

(let ((.outvar. nil)
(p (cell-value p-cell)))

(if (or (= p 0) (= p 1)) @dismiss flose))))) I
(let ((rule (make-rule)))
(setq gate-rule-7U rule)
(set? (rule-code rule) 'gate-rule-70)
(set? (rule-ctype rule) gate)
(set? (rule-outvar rule) nil)
(set? (rule-triggers rule) (list (posq 'p '(p a b))))
(set? (rule-bits rule) 0)
(setr (rule-id-bit rule) 1)
(push rule (are? (ctype-added-rules gate) (posq 'p '(p a b)))))

'(gate rule))

TAmi.*6-49. Expanmsions (if the Definitions of Two gate 11utles.



276 C1 1A1 FA SIX li IIUNCY

(defrnacro forbiddenp (val) *forbiddenp ,val .outvar.))

(statistics-counter forbiddenp-sets "Number of' nogood sets checked")
(statistics-counte' rorbiddenp-pairs "Number ofr nogood set pairs checked")

(defui *forbiddenp (val *outyar*)
(do-named outer-loop

((x (cdr (assoc val (node-nogoods *outvars))) (cdr x)))
((null X) ~

(statistic forbiddonp-sets)
(do-named inner-loop

((null c)
(return-f'rom outer-loop (car x)))

(statistic foibiddenp-pairs)
(and (not (eq (caa' c) (cell-repository *outvar*)))

(or (not (eq (cell-state (rep-supplier (caar c))) liking))
(not (equal (cell-contents (rep-supplier (caar c))) (cdar c))))

(return-from inner-loop)))))

TALEl 0-51). C'heckinig Wlic'hcr a \'aluk: is Forbidden h) Nogood Set.

T[able 6-49 shows the expansions of two of thc rules for die gate collstraint-ype. Tlhe first
olie docs not have tllc ocurrences of gate-b indcel I s and gate-varnum expanded, and the

secon~d onlC does. (The I ISP fianction posq treats its second argurncnt. a list, as a zcro-origin array,N

and( returns tile inidex into thait array of tile tfrst oCCurrCllCe (if its first arguincin using an eq test.)

6.3.28. Check ing the Nogood Sets Ca n Ad vise Rules about Forbidden V'alues

Tlhe utility n'liacin f o rb i ddonp tused by miany of the primiitive's rule definitions is define~d in
T'able 6-S0. It calls the Function * f o rb i ddenp onl the specified value and thc ccll foi- thc output
pin of thc ruile. (T'his is yet another exaniple of providing at function for internlal usC and a rnacro

that nilakes thc interface pretty in commron situations (rule definitions in this case).) It is essentially
thc check in the old code for assumption-rule in Table 5-2 (page 143). If a nogood set can

be found that for'bids the old value, it is a killcr" and is returned: if none is found thcn ()isI

lIn a simnilar manner the miacros choose - f rom and re sol v e -among interface to ftunctions

namied *choose-f roin and * reso Ive-among. Fach of theni is based onl the outer loop of tie

old oneof - rulIe ill 'able 5-3 (page 144). EFmch of thern tests ecrnents ftr the list of possibilities;
using forb iddenp, and for each forbidden value adds the killer to an acetimulating list. Riach

of'themn signals a contradiction (If none (IFthe possibilities work (and then returns @~d i smis s, not1

@Io se-the conitradiction is enqutilecd by signal -nocho ice, and it is not correct to blamne this

contradliction on the ruile which invoked armacro, becauise it is a @re sal ution-type contradic-

tionf). [hedillcrcncebhcwceni thein is that ifa valid possibility is found *choase-from returns it



§ 6.3.28 The Newv Improv'ed Impleineniation 277

irmediately, whereas eso Ive-amnong checks thern all, and retUrns @d ism is s unless there is
a unique choice.

A2 
-



278 ClIArnII-R SIX El] ]CI NCY

(defmacro choose-fromt (choices)
,*choose-from ,choices *outvar*))

(defun *choose-from (choices soutvars)
(do ((v choices (cdr v))

(killers ))
((null v)
(signal-nochoice choices *outvar. killers)
Wdsmiss)

(let ((ng (rorbiddenp (car v))))
(if ng (push ng killers) (return (car v))))))

(derun signal-nochoice (choices soutvar* killers)
(ctrace "All of the values -s for -S are no good."

choices
(cell -goodname .outvar*))

(let ((losers '()))
(dolist (killer killers)

(dolist (x (cdr killer))
(or (eq (car x) (cell-repository soutvar*))

(or (assq (rep-supplier (car x)) losors)
(push (cons (rep-supplier (car x)) (cd' x)) losers)))))

(anqueue (cons @resolution losers) *contra-queue.)))

(dermacro resolve-among (choices)
,(*resolve-among ,choices *outvare))

(defun *resolve-among (choices ooutvaro)
(do ((v choices (cdr v))

(winners')
(killers ')
((null v)
(cond ((null winners)

(signal-nochoice choices eoutvars killers)
@dismiss)
((null (cdr winners)) (car winners))
(t @dismiss)))

(let ((ng (forbiddenp (car v))))
(if ng (push ng killers) (push (car v) winners)))))

TAmiLI 6-51I. Filte~ring a Set of Possibilities Using Nogoodi Sets.

'1he functions choose-from and resolve appear in TFable 6-51. So does tile flinction

signal -nochoice, whlich performs the rcSOlition step onl a set of killer nogood sets. It produes

a ncw resolvenL set. and CflquctCs a @ resol1ut ion-type contradiction task.

..... ---



§ 6.3.29 The New Improved hitpIeineniiwion 279

(defun w hy (cellI)
(require-cell cell)
(cond ((not (node-boundp cell))

(format t "-%;-S has no value." (cell-id cell))
(let ((flag ()))

(dolist (c (node-cells cell))
(and (cell-owner c)

(dolist (rule (aref (ctype-forget-rules
(con-ctype (cell-owner c)))

(cell-flame c)))
(let ((trigger-names

(forl ist ( tr ( rule-triggers rule))
(aref (ctype-vars (con-ctype (cell-owner c))) tr))))

(format t "h[I could compute it-.-
Or]"

f lag)
(setq flag t)
(format t "~; from -:[-2*-;pin-P -(-St, )ofr~

-S by rule -S"
trigger-names
(length trigger-names)
trigger-~names
(con-name (cell-owner c))
rule)))))

(format t "-:[ [ don't have any way to compute Mi7] lg)))
(t (format t "-%;The value -S is in -S because*

(cell-value cell) (cell-goodname cell))
(select! (cell-state cell)

((@king @friend @rebel)
(why-how cell))
((@slave)
(format t "it is connected to -S-%; and

(cell-goodnamo (node-supplier cell)))
(why-how (node-suipplier cell)))
((@dupe)
(format t "it is connected to -S-%; and

(cell-goodname (cell-contents cell)))
(why-how (cell-contents cell)))

((@puppet) (lose "Bound node has a @PUPPET cell -S." cell)))))
'q.e.d.)

TABI: 6-52. linpicnientatlol of the why Ftinction.

6.3.29. The why Function Prints Valiues Forbiiddenl by Nogood Sets

The new definition of thc why fuinction appears in Tlable 6-52. As before, it divides into two

cases depending onl whether or nlot the given node Ilas a value. If it docs, then it dispatches oil dieC

cell-state of dic given ccll to determine just how it got its value. Note (hlat why and all thec othcr

explanation functions are carefully written to be tiscful on contradictory fletwoks-icy hanle

rebels and dupes properly. Ilicy don't require consistecfly. mcrely wellI-fou ndcdncss.



280 CIIAIIR SIX EITICIFNCY

(derun why-how (s)
(if (null (cell-owner s))

(format t "that is a constant.")
(format t -<~%; -0,72:;-S computed it->-C%; -0,72:; using rule -S->

(cell-owner s) fo:-[S(S-[*;=---t

(cell-rule s)
(forlist (tr (rule-triggers (cell-rule s)))

(let ((cell (aref (con-ctype (cell-owner s)) tr)))
(list (cell-id cell)

(aref (ctype-vars (con-values (cell-owner s))) tr)
(node-boundp cell)
(cell-value cell))))))

(print-forbidden-values s))

(defun print-forbidden-values (s)
(and (node-boundp s)

(or (bit-test @rule-nogood (rule-bits (cell-rule s)))
(bit-test Grule-nogoodbeg (rule-bits (cell-rule s))))

(format t "-@[-%;Nogood sets currently forbid these values: -(St,-.]
(mapcan #,(lambda (x) (and (oforbiddenp (car x) s) (list (car x))))

(node-nogoods s)))))

(defun cell-goodname (cell)
(require-cell cell)
(cond ((globalp cell) (cell-name cell))

((or (eq (cell-rule cell) *constant-rule*)
(eq (cell-rule cell) *derault-rule*)
(eq (cell-rule cell) *parameter-rule.))

(list (cell-name cell) (cell-contents cell)))
(t (list 'the (aref (ctype-vars (con-ctype (cell-owner cell)))

(cell-nano cell))
(con-name (cell-owner cell))))))

TAm i:~6-53. Fxplaiin ing a TFLIC-Suppli'r. and Prii ing Forbiddecn V'alues.



§ 6.3.29 The New Iniproved Iinpleinwiln 281

Tlhe function why- how (Table 6-53) prints the constraint, rule. and triggers that werc respon-
sible for a computed valuLe, and then call s print -forbidden -v alIues to check for any valucs
that arc forbidden by nogood sets. Of' course, dlie set of all possible values is infinite, being all
the integers, but pr in t-f orb idden-val ues simply imaps over the buckets of die nogoods
C0omIponent of a node, and for each bucket valuie checks to sec whether it is forbiddlen. After all, a
\alLie cannot be foibidden if there is 110 bucket to hold a killer for it!

T[he function cell -goodn anie tries to pick a pretty namne for a Cell for pinH~ting purposes.
Fhis version ntever uses the cell-id. which the user isn't ever stupposed to see anyway.

As an examnple, consider this interaction (with tracing turned off):

(test) ;set up a temperature conversion network
DONE
(=z fahrenheit (default -40))
DONE
(why centigrade)
;The value -40 is in CENTIGRADE because it is connected to (THlE B MULT)
* and (MULT:MULIIPLIER> computed it using rule (B*-MULTIPLIER-F1ULE-5(A,C)>
* from: CELL-271 (A) = 9, CELL-269 (C) =-360.

Q.E.D.

As another examnple, suppose that the network for the four queens problemn of §5.4.2 has been

run in the new systemn.

(why qa)
;ihe value I is in QO because it is connected to (THIE PIN ONEOF-250)
* and <ONEOF-250:ONEOF', computed it
using rule ((PIN &NOGOODBEG).-ONEOF-IlULE-44()>.

:Nogood sets currently forbid these values: 0.
Q.E.D.
(why q1)
;The value 3 is in Q1 because it is connected to (THE PIN ONEOF-253)

* and <ONEOF-253:ONEOF> computed it
* using rule ((PIN &NOGOODBEG).-ONEOF-RULE-44()).

;Nogood sets currently forbid these values: 0,1,2.
Q.E.D.

Of coirse, a value is forbidden For q n only when it is assuined that all the other q i arc fixed.



282 Cl IA ITUR SIX IFlTlCIFNCY

(defun why-ultimately (cell)
(require-cell cell)
(cond ((not (node-bousidp cell))

(format t "%;-S has no value." (cell-id cell))
(format t "-@[ Perhaps knowing the value of

:15, 72;-S -- tar -)would help.-]"
(forlist (c (delq cell (desired-premises cell))) (cell-name c))))

(t (format t "-%;The value -S is in -S because
(cell-value cell) (cell-goodnane cell))

(select! (cell-state cell)
((@king @friend @rebel) (why-ultimately-how cell cell))
((@slave)
(format t "it is connected to -S-%; and

(cell-goodname (node-supplier cell)))
(why-ultimately-bow cell (node-supplier cell)))
((@dupe)
(rormnat t "it is connected to -S-%; and ". (rell-contonts cell))
(why-ultimatei-iow cell (cell-goodnane (coll-contents cell))))

((@puppet) (lose "Bound node has a @PUPPET cell -S." cell)))))
'q.e.d.)

(defun why-ultimately-how (cell s)
(ir (null (cell-owner s))

(format t "that is a constant.")
(multiple-value-bind (premises defaults parains nogoods trees links)

(fast-premises cell)
(format t "it was ultimately derived"-

-QClx;rhese connections were involved:-
{:fY%; -s = S-t

(forlist (p premises)
(cons p (mapcan #,(lambda (c)

(and (globalp c) (list (cell-name c))))
(node-cells p))))

(forlist (1 links)
(list (coll-goodname (car 1)) (cell-goodname (cdr l))))))))

TAll.i:6-54. nlenltltion of why - u1t imatel1y.

6.3.30. The why - u 1It i mate Ily Function Prints Cell-link Information

The function why-ul timately (Trabic 6-54) has been split inlto two ftinlctiolls in tile same

way that why was. Ilie ffunction why-ul timately-how prints not (only the preillises whlich

support tile qulantity asked about, but also all fic equating connections traversed by tile comnputa-

tdon (using the Ilinks information comipttcd by premises). As ail examiple, con~sider this

explanation for the temnperature conversion network:

(test) ;set up a temperature conversion network

(sfahrenheit (default -40))



§ 6.3.30 The New Inipro red litpeietlatiott 283

(derun dfesired-premises (cell)
(require-cell cell)
(progl (desired-premises-lark cell) (desired-preinises-unmark cell)))

(defun desired-premises-mark (cell)

(require-cell cell)V
(cond ((and (not (node-boundp cell))

(not (markp cell)))
(mark-node cell)
(do ((c (node-cells cell) (cdr c))

(p I() (nconc (if (null (cell-owner (car c)))
(and (globalp (car c)) (list (car c)))
(desired-premises-constraint (car c)))

PM)
((null c) p)))))

(defun desired-premises-constraint (cell)
(require-cell cell)
(let ((p '0))

(dolist (rule (aref (ctype-forget-rules (con-ctype (cell-owner cell)))
(cell-name cell)))

(dolist (tr (rule-triggers rule))
(setq p (nconc (desired-premises-mark

(aref (con-values (cell-owner cell)) tr))

(defun desired-premises-unmark (cell)
(require-cell cell)
(cond ((markp cell)

(unmark-node cell)
(dolist (c (node-cells cell))

(and (cell-owner c)
(doarray (pin (con-values (cell-owner c)))

(desired-premises-unmark pin)))))))

TAmliu: 55. L ocaIting Desired Preinises for an Unbutind Cell.

DONE
(why-ultimately centigrade)

;The value -40 is in CENTIGRADE because it is connected to (THE B MULT)
and it was ultimately derived from:

(CELL-292 (DEFAULT-290) KING -40> FAHRENHEIT.
;These connections were involved:

(THE B OTHERMULT) zz(CONSTANT 5),

FAHRENHEIT ==(DEFAULT-29O -40),
(THE C ADD) FAHRENHEIT,
(THE B ADD) (CONSTANT 32),

(THE A OTHERNULT) ==(THE A ADD),
(THE C MULT) (THE C OTFIERMULT),
(THE A MULT) zICONSTANT 9),
CENTIGRADE (THE 8 MULT).

Q.E.D.



284 C IAPTF R SIX I IICIENCY

(defun what (cell)
(require-cell cell)
(cond ((not (node-boundp cell))

(format t "-%;-S has no value. I can express it in this way:-
:-% -S = -

(cell-id cell) (tree-form cell t)))
(t (format t "-%;The value -S in -S was computed in this way:-

:-%, s; s'-"
(cell-value cell) (cell-goodname cell) (tree-form cell))))

(print-forbidden-values (cell-true-supplier cell))
'okay?)

(defprop assumpltion disliked treeforinpref)
(defprop oneof disliked treeformpref)
(defprop firstoneof disl iked treeformpref)

(defmacro numniark (cell)
-(setf (cell-mark ,cell)

(if ( nuinberp (cell -mark ,cell1)) ( + (cell-mark ,cel l) 1) 1)))
(defmacro Lmnnuniniark (cell) (setf (cell-mark ,cell) )
(defmacro nunarkp (cell) (numuberp (cell-mark ,cell)))
(defmacro singlenuneiarkp (cell) -(equal (cell-mark ,cell) 1))

(defun tree-rormi (cell &optional (shallow ()
(require-cell cell)
(nunwiark (cell-true-supplier cell))
(prog2 (tree-form-trace cell shallow)

(tree-form-gather cell shallow)
(tree-form-unmark cell )))

TABLi:~6-56. lniplenicnttation of what.

lccode ftor desired-premises (TFable 6-55) is essentially its before, with ininor

lnodificatiolls for the IlCw data strulcttures involved.

6.3.31. TIhe wh at Function Uses tile Gelleralized Algebraic Formn

Thc only change to the funlction what (T[able 6-56) is the addition of it call to tile funlctionl

print-forbidden-values (defincd in Tahle 6-53). All of thc interestinlg changes arc in dieC

funlction t ree - form and its cohorts.

I couldn't resist ulsinlg property lists for soinething (this is LISP code, after all!), an~d so
the property tree forinpref onl the namne fo a collstraillt-tyIpe indicates whether that type
of constraint rnay he used to express the v'altc of at cell. Possible valeS are di sli ked
and forbidden. thotugh forbidden isn't Ulsed here. Types assumnplion, oneof, aild

firs toneof are disliked: they are not tused ill algebraic expressionls if there is all), better alternla-

tive.



§ 6.3.31 The New !mpro red Imiplemntaion 285

(defun tree-form-trace-set (owner names shallow)
(require-constraint owner)
(do ((n names (cdr n))

(queue 1() (nconc (tree-form-tag (aref (con-values owner) (car n))) queue)))
((null n) (dolist (c queue) (tree-formi-trace c shallow)))))

(defun tree-formn-tag (cell)
(require-cell cell)
(let ((s (cell-true-supplier cell)))

(and (not (progi (nunvnarkp s) (nummark s)))
(list cell))))

(defun tree form-trace (cell shallow)
(require-cell cell)
(cond ((node-boundp cell)

(let ((s (cell-true-supplier cell)))
(cond ((coil-owner s)

(or shallow
(tree-form-trace-set (cell-owner s)

(rule-triggers (cell-rule s))
shallow)))

(t (nunwnark s))))) ;crock
(t (let ((cells (node-cells cell)))

(usurper (Cr (if shallow
(or (tree-form-shallow cell cells)

( tree-form- deep cell cells shallow))
(or ( tree-rormi-deep cell cells shallow)

( tree-form-shal low cell cells)))
(progn (and (cell-owner cell)

(tree-formi-trace-set
(cell-owner cell)
(fortimes (j (array-length

(con -valIue s
(cell-owner cell))))

J)
shallow))

TA~IlI,16-57. Tracing. OutI an Algeraiic Fxpr'ssioi n i lie Network.

lil1C code for tracing out an expressionl (Table 6-57) is not chlanged nluell. It operates oil the

true-supplier of tile given cell if it is botiwl. If the nodc has 11o valtie, thcen any supplier will do,

anld thc existinlg puIppet could be used. I Iowevcr, t ree- f o rn-t race trics as before to choose

a "good" artificial supplier and] lets it usuirp tllC existing puppet. (It is somecwhat of a "nlo-nlo" to

have a probing utility suichit s what alter tile network being probed-it violates the principlc that

dcbuggiig tools shlould avoid alterinlg tlile object b~einlg debugged ill uInprCdlictablC ways. 'I'his is

a very tinly violationl. thloughl. If dieC node structure is sound. it doesn't rmatter whlich ccll is the

puppet.)



AD-AU96 556 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC FIG 9/2
THE DEFINITION AND IMPLEMENTATION OF A COMPUTER PROGRAMMING LAN--ETCCU)
AUG 80 6 L STEELE N0001-80-C-0505

UNCLASSIFIED AI-TR-595 NL14 I f If I I I I I I I IEEEEEEEEEEEEEE
EEEIIEEEEIIEEE
IIEEEEEEEEIIEE
IIIIIIIIIIIIII
EIIIIEEIIEEEEE



286 CIlAPTrIR SIX I ICdE NCY

(derun tree-rorm-shallow (cell cells)
(do ((c cells (cdr c)))

((null c) ())I
(and (not (eq (car c) cell))

(globaip (car c))
(return (car c)))))

(defun tree-form-deep (cell cells shallow)

(do ((z cells (cdr z))

((null z) any)
(and (not (eq (car z) cell))

(cell-owner (car z))
(let ((pref (get (ctype-name (con-ctype (cell-owner (car z))))

treerormpref)))
(cand ((eq pref 'dislike) (setq any (car z)))

((not (eq pref 'forbidden))
(tree-form-trace-set

(cell-owner (car z))
(fortines (j (array-length (con-values (cell-owner (car z)))))
J)

shallow)
(return (car z))))))))

TAB1LE 6-58. Dctcmiining a 'Good* Artificial Suipplier.

The new version of tree -form- deep (Table 6-58) uses the preferences expressed by thc
treef ormp ref property to avoid using a disliked constraint-type in anl algebraic expression. A
forbidden onc is never. ever used: a disliked one is used only if Lilerre aren't ally others.



§6.3.31 The New Improved Imph'mnemiaiion 287

(declare (special *cuts* .allcuts* sextra-equations*))

(defun tree-form-yather (cell shallow)
(require-cell cell)
(do ((*cuts* (list cell))

(*allcutss (list cell))
(equations I())
(*extra-equations* ()

((null *cuts*) (nreverse (append sextra-equationss equations)))
(let ((cut (pop *cuts*)))

(push (list (cell-goodname cut) (tree-form-chase cut shallow t))
equations))))

(detun tree-torm-chase (cell shallow top)
(require-cell cell)
(lot ((s (cell-true-supplier cell)))

(cond ((and shallow (node-boundp cell)) (cell-value cell))
((and (not lop) (not (singlenuninarkp s)))
(cond ((and (null (cell-owner s))

(not (null (cell-rule s))))
(do ((c (node-cells s) (cdr c)))

((null c) (cell-contents s))
(cond ((good-global (car c) s)

(cond ((not (memq (car c) *allcuts*))
(push (car c) *allcutss)
(push (list (cell-name (car c)) (cell-contents s))

*extra-equat ions.))
(return (cell-name (car c)))))))

(t (let ((best (do ((c (node-cells s) (cdr c)))
((null c) S)

(and (good-global (car c) s)
(return (car c))))))

(cond ((and (not (and (eq best s) (globalp s)))
(not (megnq best sallcutso)))

(push best sallcuts.)
(push best *cuts*)))

(cell-goodname best)))))
((cell-owner s)

(cond ((and (eq s cell) (not top)) (cell-goodname s))
(t (let ((args (forarray (v (con-values (cell-owner s)))

(cond ((eq v s) '%)
((and (node-boundp s)

(not (member (cell-name v)
(rule-triggers

(cell-rule s)))))

(t ( tree-f orm- chase v shallow ()f)f))
(nconc (list (ctype-symbol (con-ctype (cell-owner s))))

(it (eq (car args) '%) (cdr args) args)
(and (con-into (cell-owner s))

(list (con-info (cell-owner s)))))))))
((globalp s) (cell-name s))
(t (cell-contents s)))))

TAI.i 6-5'). Consricliiig Ole Triwed-oti1 Algebraiic Expression.



288 Cil I l*1-R SIX FFIIFiNCY

(defun good-global (c s) ;is c a good global for nam~ing s?
(and (not (eq c s))

(globaip c)
(or (and (or (eq (cell-state s) @king)

(eq (cell-state s) @puppet)
(eq (cell-state s) @slave)
(eq (cell-state s) @friend))

(eq (cell-state c) @slave))
(and (eq (cell-state s) @rebel)

(eq (cell-stale c) @dupe)
(eq (cell-contents c) s))

(and (eq (cell-state s) @dupe)
(eq (cell-state c) @dupe)
(eq (cell-contents c) (cell-contents s))))))

(derUn tree- form- iniark (cell)
(require-cell cell)
(let ((s (cell-true-supplier cell)))

(cond ((nuiinarkp s)
(unnulnark s)
(and (cel I-owner s)

(doarray (pin (con-values (cell-owner s)))
(tree-forin-unnark pin) ))))))

lABlE 6-6(1. Checking 15or ;1 (Kd Globall Nitrie. and Unnirking. for tree -form.

Thle new version of t ree - foim- c has e (Table 6-59) uIses the % cotivention-as it transiales
the pins of sonJic colisraifli. it nlotes M~id~i oneC was tile oultput pill anld subIstitutes a % for it. Also,
for any pill thlat was not a trigger of thc ruile that Computled [Ihe v'alue. if any, it subhstiLtts a ?, as

before. When ConsMLuClillg hcl filial form, ifthc first argumnent expression is % it is olted.

Thie prcdicitce good -glIobalI (Table 6-60) takes it two cells of a niode, and is true if the first

is Ihougilt to be a goodi chloice as a nlamei For tile second. F-or this to bc (li casc it mlust ibc diffecrent

froml the seconld, must be the cel for at global variable, anld must take its uai from thc same~ place

tlie second one does. (It might Seemi that tile calauSe ( eq ( cell - s tate C ) @S I ave )OtLght
rather to be

(or (eq (cell-state c) @slave)
(eq (cell-state c) Gfrlend))

-however. a global variable never Ilas its owil valuec, anld so call never be at friend.)

[he Function t ree - f o ril-unma rk runs around ats before, resettinlg all thle mlarks.

As an example of witat, consider this interaction:

(test) ;set up temperature conversion network
DONE
(== fahrenheit (parameter -40))
DONE



§ 6.4 The New Improved I:'xample 289

(what centigrade)
;The value -40 in CENTIGRADE was computed in this way:

CENTIGRADE '- (* (, (+ FAHRENHEIT % 32) 5) 9 %)
FAHRENHEIT 4- -40

OKAY?

This algebraic t'orrm may be unfamiliar, but it correctly conveys the netw ork structure used to

compute the value.

(: fahrenheit (default 32))

These are the premises that seem to be at fault:
: <CELL-415 (DEFAUL[-413) [OPPOSED] KING 32>,

* <CELL-412 (PARAMETLR-410) REBEL -40 AGAINST 32) == FAHRENHEIT.
Choose one of these to retract and RETURN it.

;BKPT Choose Culprit
(return fahrenheit) ;uniquely identifies the culprit
DONE

Note that returning fah renhe i t uniquely identifies the culprit even iough it and both premises
are all in the same node (cf. §6.3.20 and 'I'able 6-27 (page 243)). It could also have been specified by
(return parameter-410).

(what centigrade)

;The value 0 in CENTIGRADE was computed in this way:

CENTIGRADE +- (* (* (+ FAHRENHEIT % 32) ?) 9 %)
FAHRENHEIT +- 32

OKAY?

Because 32 and '/" sum to 'ahrenhe it (which is also 32). therefore '/" is zero. and so the
other operand to the inner multiplication was not a trigger for the product. This other operand is

therefore represented as a "?".

6.4. The New Improved Example

One advantage of using the qucue-based control structure is that pending computations are
stored explicitly as data strucmurcs rather than implicitly in the host-language control stack, which
in many cases is of a finite size much smaller than the heap area-this is the case for many IISP

implcnilentations. including ILisp Machine I Is],. Using the system of Part One, it was not possible to
run the N queens problem Ibr N 6 because the l.is, system stack would ov'erllow. There is no

problem with the current queue-based system, however.

The new language has the d i sal l ow const ,:ct. which allows cycling though a set of pos-
sibilities. In this example we will obtain all four solutions for the six queens problem. At each step
we will ask for the statistics also.

- - V ..



290 CIIAPrI*R SIX i1CINY

(slxqueen) ;start up the six queens problem

DONE ;after much computationt

TVhe isi, function s i xqueen merely creates a large number of constraints analogous to those

in flablc 5- 19 (page 166), 'Iable 5-20 (page 166),T'ablc 5-21 (page 167). and Iablc 5-22 (page 167).

(list qO q1 q2 q3 q4 q5)
((CELL-49 (QO) SLAVE 1>
(CELL-51 (Q1) SLAVE 3>
(CELL-53 (Q2) SLAVE 5>
(CELL-55 (Q3) SLAVE 0>
(CELL-57 (Q4) SLAVE 2)
<CELL-59 (05) SLAVE 4)

(stat0

(stats)rins enrae

3895 =Iterations of top-level-loop queue scan
3742 =Rules enqueued
3156 =Added rules enqueued

51 -Forget rules enqueued
535 z Nogood rules enqueued

3495 =Attempts to run a rule
2785 -Successfully run rules
1291 =Rule runs which dismissed

0 = Rules which overrode other rules
143 =Rules which superseded other rules
30 =Usurpations

124 =Contradictions dequeued for processing
103 = NODE contradictions dequeued for processing

o a SCONSTRAINT contradictions dequeued for processing
21 = @RESOLUTION contradictions dequeued for processing

124 =Contradictions actually processed



§ 6.4 The New Improved .xamnple 291

124 = Nogood culprits automatically chosen

124 = Nogood sets installed

201 = Number of calls to

12547 = Awakenings
2546 = @ADDED awakenings

0 = @FORGET awakenings

9336 = @NOGOOD awakenings
1270 = Values forgotten

3778 = Number of nogood sets checked
5706 = Number of nogood set pairs checked

NIL

'luere have been 103 ordinary contradictions and 21 resolutions. Now we will disallow ihis

particular solution, and force a search for another.

(disallow qO q1 q2 q3 q4 q5)
DONE
(list qO q1 q2 q3 q4 q5)

(<CELL-49 (QO) SLAVE 3)
<CELL-51 (Q1) SLAVE 0>
<CELL-53 (O2) SLAVE 4>
<CELL-55 (03) SLAVE 1>
<CELL-57 (Q4) SLAVE 5>

<CELL-59 (Q5) SLAVE 2>)

0

(stats)
248 - Repositories generated

248 = Cells generated
0 - Initialized cells

81 = Constraints generated
5294 = Iterations of top-level-loop queue scan

5278 = Rules enqueued
4318 = Added rules enqueued

51 = Forget rules enqueued

909 = Nogood rules enqueued

Ii



292 CIIAIl'IR SIX I:1:FI ]I;iNCY

4847 = Attempts to run a rule
4046 = Successfully run rules
1800 = Rule runs which dismissed

0 = Rules which overrode other rules

267 = Rules which superseded other rules

30 = Usurpations

170 = Contradictions dequeued for processing

128 = @NODE contradictions dequeued for processing

0 = CONSTRAINT contradictions dequeued for processing

42 = @RESOLU[ION contradictions dequeued for processing

170 = Contradictions actually processed

170 = Nogood culprits automatically chosen

170 = Nogood sets installed

201 = Number of calls to =

20332 = Awakenings

3483 = @ADDED awakenings

0 = @FORGET awakenings

15764 = @NOGOOD awakenings

1898 = Values forgotten

8913 = Number of nogood sets checked
13603 = Number of nogood set pairs checked

NIL

(disallow qO q1 q2 q3 q4 q5)
DONE

(list qO qi q2 q3 q4 q5)

(<CELL-49 (O) SLAVE 4)

<CELL-51 (Q1) SLAVE 2>

<CELL-53 (Q2) SLAVE 0>

<CELL-55 (Q3) SLAVE 5>

<CELL-57 (Q4) SLAVE 3)

<CELL-59 (Q5) SLAVE 1>)

(stats)

; 248 =Repositories generated



§ 6.4 The Nci, I11ijotd I.,wilup/e 293

248 = Cells generated
; 0 = Initialized cells

; 81 = Constraints generated

7159 = Iterations of top-level-loop queue scan

7404 = Rules enqueued
5876 = Added rules enqueued

; 5= forget rules enqueued
1477 = Nogood rules enqueued

6652 = Attempts to run a rule

5733 = Successfully run rules

2469 = Rule runs which dismissed
; 0 = Rules which overrode other rules

428 = Rules which superseded other rules

; 30 = Usurpations

229 = Contradictions dequeued for processing

159 = @NODE contradictions dequeued for processing

; 0 = CONSTRAINT contradictions dequeued for processing

* 70 = @RESOLUTION contradictions dequeued for processing

229 = Contradictions actually processed

229 = Nogood culprits automatically chosen

229 = Nogood sets installed

201 = Number of calls to ==

31887 = Awakenings

4707 = 5ADDED awakenings
; 0 = @FORGET awakenings

25468 = @NOGOOD awakenings

2755 n Values forgotten

17166 = Number of nogood sets checked

26378 = Number of nogood set pairs checked

NIL

(disallow qO q1 q2 q3 q4 q5)

DONE

(list qO q1 q2 q3 q4 q5)

(<CELL-49 (O0) SLAVE 2>

<CELL-SI (Q1) SLAVE 5>

<CELL-53 (Q2) SLAVE 1>

<CELL-55 (Q3) SLAVE 4>

<CELL-57 (04) SLAVE 0>

<CELL-59 (Q5) SLAVE 3>)

,I



294 Cll.\w PIIR Si\ Fl II( II .\CY

0

(stats)
248 Repositories generated
248 Cells generated
0 Initialized cells

81 Constraints generated
8991 Iterations of top-level-loop queue scan
9523 = Rules enqueued
7321 = Added rules enqueued

51 = Forget rules enqueued

2151 = Nogood rules enqueued
8427 = Attempts to run a rule
7466 = Successfully run rules
3123 = Rule runs which dismissed

0 = Rules which overrode other rules

660 = Rules which superseded other rules
30 = Usurpations

285 = Contradictions dequeued for processing
172 = @NODE contradictions dequeued for processing

0 = @COIJSTRAINT contradictions dequeued for processing

113 = @RESOLUTION contradictions dequeued for processing
285 = Contradictions actually processed

285 = Nogood culprits automatically chosen

285 = Nogood sets installed
201 = Number of calls to

45184 = Awakenings

5870 = @ADDED awakenings
0 = @FORGET awakenings

36872 = @NOGOOD awakenings
3602 = Values forgotten

32911 = Number of nogood sets checked
51809 = Number of nogood set pairs checked

NIL

At this point all possible solutions hae been generated. I)isallo% ing this one causcs a -hard-

core contradiction", after %%hich die final statistics are as follows.

I -I



§ 6.4 The New Inproved I:xatple 295

(stats)
248 = Repositories generated
248 = Cells generated
0 = Initialized cells

81 = Constraints generated
21387 = Iterations of top-level-loop queue scan
29538 = Rules enqueued
18027 = Added rules enqueued

51 = Forget rules enqueued
11460 = Nogood rules enqueued
20283 = Attempts to run a rule
19256 = Successfully run rules
8606 = Rule runs which dismissed

0 = Rules which overrode other rules
763 = Rules which superseded other rules
30 = Usurpations

825 = Contradictions dequeued for processing
197 = @NODE contradictions dequeued for processing

0 = CONSTRAINT contradictions dequeued for processing
628 = @RESOLUTION contradictions dequeued for processing
825 = Contradictions actually processed
824 = Nogood culprits automatically chosen
824 = Nogood sets installed
201 = Number of calls to

218830 = Awakenings

16150 = @ADDED awakenings
0 = @FORGET awakenings

190396 = @NOGOOD awakenings
9887 = Values forgotten

162765 = Number of nogood sets checked
250279 = Number of nogood set pairs checked

NIL

It is t1sefill to comparc this to the rc'csts of dc llSl, program of'lablc 5-18 (pagc 162), which

uscs chronological backtracking.

(queens 6)
Solution: (1,3,5,0,2,4) after 140 contradictions and 25 backtracks.
Solution: (2,5,1,4,0,3) after 334 contradictions and 64 backtracks.
Solution: (3,0,4,1,5,2) after 408 contradictions and 79 backtracks.
Solution: (4,2,0,5,3,1) after 602 contradictions and 118 backtracks.
Total of 742 contradictions and 149 backtracks.
DONE

Thc "hacktracks" of (his program correspond to resolution steps, and so we may coiparc

numbers directly:



296 CI IAVI FR SIX 1:1 1 1ICII\CNY

I Is, Constraint I ISi, Constraint

Cotrradiction,, Contradiction-, lBaCkraCkS RsOltions

A\fter first Solution 140 103 25 21

A\fter second Solution 334 128 64 42
A\fter third Solution 408 159 79 70
.\fter Four11th Solution1 602 172 118 113
After exhaustion 742 1971 149 628r

It CO"\ to wee th at thle u1l n-ch ronlloI ica I (cL nstra inntIeri exdmaiines r naim fe k r posxi tions

bc fore an i ill in1 a a nle\x s l u tioll. I hle ii U iner of reso. luLion steps il 1111.1 t[Ilk ic ame. Li ieCss theric
are no more soIlutions inl x\hiCl CI', it muLst do abOlut tile saMe1 11011 a Otint o k as, thle chronologi-
cal xersimn it) pro,. e that thwl c h no solution (thkN is not surprisine).

6.5. The New Improved Summary

lh% chaptei has pi-esented a complete r-ml entinof'the constraint languaige dc\ eloped
inl Part One. A 1 e\% IIC' f-tureN (Suich as d is allIow) Ila\i e been added to thle 1,111-110C. but thle
priniar\ emphasis has been pLicedl onl speed. [hle ne\% s\ stein records multiple reasons fill belie\ ing
al Waloe. It uses a task CIueueI cointrol structure for more flex ihilii% inl aIlociting computational

resourices. It pre-compiles talels of rtiles for primitx operators for faist run-time access and dis-
criniination Liirtie to be executed. It hashes constant cells ill order to share those ile samne
\.ile amiong mut116il uISes. It uses d tiniftnn atlgehraic nlotationl in printing parts of Ohe fletmork as

expressions.



Oh. tnce IJW oppO.Nition
lftis €'omph'tly opposed

To till i/t' Nuppo.siilons
Thal ttai g'n "ral'y .Upposed."
.4n nois the sup'r.itionm

Thai it'rt iho't to be imposed
Are en b, composition Chapter Seven
To be s0igh i' decomposed!

-Wall Kcly (1952)
I Go Pogo

Correctness

T I IF (.ONSIlRINT SYSIiM dcscribcd in the previous chapter is a laigc program, sufficiently
complicated that thcre may well remain in it subtle errors. Nevertlieless, the design is

intended to make it simple(r) to argue that it is correct. Ail ofthe program state is made explicit in

the form of! ISil data structures, concerning which certain strong invariants may be stated.

I have not in any sense demonstrated that the system is correct. The system is an exercise in
engineering: it is too large to he a reasonably manageable exercise in mathematics. However, in this
chapter is outlined a series of statements which, if rigorously proved invariant over the processing

of any queued task, would go a long way toskard proving total correctness of the system. Some of
these I have proved informally for certain classes of tasks, and consideration of these statements

certainly aided in "eyeballing'" the code for errors.

Parenthetical remarks provide definitions of terms and supplementary elucidation.

7.1. The Structure of Nodes

For every cell:

* its id is a I ISIl symbol (read-only). (I'lie remark "(read-only)" about a component means that the

component may never be altered once initialized.)

0 its reposiloty is (a pointer to) 1 a repository.

I As in lISt' eveevthing is represented in terms of pointers, following this one reminder I sh~ill not mention Ihe
presence of pointers. Ncecrthelcss. the sharing of objccis is very important!

297



298 CI: WIFR SlV FN CORRIEUINI-SS

" its owner is cither ( ) or a constraint (read-only).

" its name is a I ISP s' inhol or an integer (read-only).

* its swieis one ofthe six constants @king, @puppet, @friend. @slave. @rebel, @dupe.

(When %c say "'a cell is a king" -e mean that its slaic is @k ing, and similarly ror the others.)

" its contents is either ( ) . an integer, or a cell.

" its rule is either ( ) or a rule.

" its cquivs is a list of distinct cells. (By "'a list of distinct things" we mean "a list of things in which

no thing appears more than once". The list thus represents a set, and so the list may contain the

elements in any order unless otherwise stated.)

" its link is a cell or () .

" its miark is ( T). (hought apparently constant, this is noi read-only! It may be used temporarily,

but irnist always be reset to ( ) before scheduling a new task.)

For every repository:

* its cells is a list of distinct cells.

* its supplier is a cell.

" its idisa liSP symbol (read-only).

* its nogoods is a list of buckets: each bucket is a pair whose car is an integer and whose cdr is a

list of nogood sets. No two buckets in the nogoods of a single repository may contain the same

integer. (We shall say that "a nogood set is in the nogoods of a repository" if the nogood set is a

member of some list which is the cdr of some bucket of the nogoods of the repository.)

" its contra is an integer.

Relationships among cells and repositories:

" For every repository r, for every cell c in the cells of r, the repository of c is r.

* For every repository :, its supplier is :i member of its cells list.

" The I.ist value of the id of a repository is that repository.

" The I IsP value of the Mofa cell is that cell.

" If the name of a cell is a symbol, the i-ISP value of that symbol is the cell.

" The link of a cell is a member of the cells list of the repository of that cell.

" Ifa cell has a constraint for its owner, then its name is an integer.

S'rhe members of the equivs list of a cell are all members of the cells list of the repository of that

cell.

* If cell a is a member of the equivs list of cell b, then b is a member of the equivsof a.

* No cell is in its own equivs list.

* The cell which is the supplierof a repository must have ( ) for its link.

* Any cell which is not the supplier of its repository must have a cell for its link.

SI



§ 7.2 Consraint-types and Constraints 299

" If cell a is the link of cell b, then a is in the equivs list of b (and therefore b is also in the equivs

list of a).

" Consider the relationship between two cells a and b "cell b is the link of cell a"; the transitive
closure of this relationship is an irreflexive partial order. that is, there are no cycles. (This plus
the fact that precisely one cell of a node has a null link implies that the link structure forms a
directed tree with all paths eventually converging at the supplier.)

Relationships among the states of cells and other things:

P No cell which is not a supplier is a king or puppet.

e The cell which is the supplier for a repository is a king or puppet. (11, "the supplier of a cell" we
mean the supplier of the repositoly of the cell. By "the king of a cell" we mean the %upplicrof the

repositoy of the cell, which is known to be a king.)

o The supplier of a rebel, fricnd, rebel, or dupe is a king. (Conversely, if the supplier of a

repository is a puppet, then all other mernbers of that repository's cells list are slaves.)

* A slave or puppet has ( ) for its contents and its rule.

* A dupe has a cell for its contens, and that cell is a rebel and a member of the cells list of the
dupe's repository. A dupe has ( ) for its rule.

" A king, friend, or rebel cell has an integer for its contents, and a rule for its rule.

" 'hle contents ofIa friend is the same as the contents of its king.

" ilie contents of a rebel is different from the contentsof its king.

" A king, friend, or rebel cell either has a constraint for its owner, or has one of the three special
rules *constant-rule*, *default-rule,,or *parameter-rule* foritsrule.

* The contra of a repository is equal to the number of rebels in its cells list.

We say that "a cell has a value" if the cell is a king, friend, rebel, or dupe, or if it is a slave and

the supplier of the cell's repository is a king. The value of a king, friend, or rebel is its contents; the
value of a dupe is the contents of its contents (a rebel); the value of a slave which has a value is the

contents of its king.

7.2. Constraint-types and Constraints

For every constraint-type:

" its name is a I ISP symbol (read-only).

" its vars is an array of distinct is symbols (read-only). (When a constraint-type is being dis-
cussed, a reference to N refers to the length of this array. An integer used to index this array, or
any parallel array, is called a pin-number. 'Tlic corresponding element of the vars array is called
the pin-namc for that pin-number.)

I.



300 CIIAVITR SEiVEN CORRECUNI.SS

" its added-rules is an array of length N of lists of distinct rules (read-only).
" its forge-rules is an array of length N of lists of distinct rules (read-only).

" its nogood-rules is an array of length N of lists of distinct rules (read-only). (The three arrays
added-rules,forgel-rules, and nogood-rules of a constraint type are called the "rule arrays" of the

constraint-typC. The set of all rules appearing in any element of any rule array of a constraint-
type is called the "rule set" for that constraint-type.)

" its symbol is a I Isi, symbol (read-only).

i-very constraint-type is entirely read-only.

For every constraint:

& its name is a I iSlP symh)l (read-only).

e its ctype is a constraint-type (read-only). (When a constraint is being discussed, a reference to N
refers to the length of the vars array of the ctype of the constraint. Also, by an "instance" of a

constraint-type we mean any constraint whose ctYpe is that constraint-type.)

* its values is an array of length N of distinct cells (read-only). (The set of cells which are elements
of the values array of a constraint are called the "pins" of that constraint.)

* its infio may be anything (normally read-only).

* its queued-mles is an integer.

Miscellaneous relationships:

" 'he Ist1 value of the name of a constraint-type is that constraint-type.

" The I ISP value of the name of a constraint is that constraint.

" The symbol of a constraint-type has on its property list a ctypename property whose value is
the name of the constraint-type.

" Ifa cell has a constraint for its owner, then the name of the cell is an integerj not less than 0 and
less than N, and entry /of the values array of the owner of the cell is that cell. (It follows that

all the cells in the values array of a constraint have distinct name components ranging from 0 to
N- 1.)

7.3. Rules

For every rule:

" its Iriggers is a list of distinct integers (read-only).

" its ou/var is either ( ) or an integer (read-only).

• its code is a i.ISl symbol (read-only).

• its clype is a constraint-type (read-only).



§ 7.3 Rules 301

* its bits is an integer 0, 1, 2, or 3 (read-only). (We say that a rule is a &nogood rule if this
integer is I or 3, and a &nogoodbeg rule if it is 2 or 3.)

* its id-bit is a positive integer wbich is a power of two (read-only).

Every rule is entirely read-only.

Relationships among rule components:

* The I ISP value of the code of a rule is that rule.

* 'IThe I iSI, function definition for the code of a rule is a I ISP finction of one argument. The value
of this finction (when given an appropriate argument. to be described later) is either an integer
or one of the special constants @lose and @dismiss, and it may not be an integer if the

outrar of the rule is ().

* If the outvar of a rule is an integer, then it is not equal to any member of the triggers list.

* If the oulvar ofa rule is ( ) then the bits of the rule is zero.

Relationships between rules and constraint-types:

0 If a rule is a member of any element of any rule array of a constraint-type, then the ctype of that

rule is that constraint-type.

T [he integer elements of the triggers of a rule, as well as the outuvar of the rule if it is not (), are
each not less than 0 and less than N, the length of the vars of the cijpeof the rule. (Thus each of
these integers is a pin-number.)

o A rule is a member of elementj of the added-rules array of its ctype if and only ifj is a member
of the rule's Iriggers.

* A rule is a member of elementjof theforget-rules array of its cOTye if and only if its outvar isj.

* A rule is a member of elementj of the nogood-rules array of its ctjpe if and only if its outivar isj

and its bits is non-zero.

S"'lile id-bit components of all the rules of a constraint-type's rule set are distinct.

On the running of rules:

" The code of a rule may be applied only to an instance of the cOTpe of the rule. (When such an
application is performed we say that the rule is "run" on the instance constraint.)

" When a rule is I'in on a constraint, the trigger cells for the rule must all have values. (By the
"trigger cells" of a rule being run, we mean the set of cells which are elements of the values of

the array and whose names (which are the corcsponding indices into that array) arc members of
the triggers list of the rule.)

" The result computed by running a rule on a constraint may depend only on the values of the
trigger cells and the info of the constraint; and also on the nogoods of the repository of the
output cell (if any) provided that the bits of the rule is non-zero. (If the rule's oulvar is not ( )
aild the result of running the rule on a constraint is an integer, we say that "the rule produced

* ,



302 CI IAPIIR SFII-N CORRICNIFSS

the integer for tie output cell", where by "output cell" we mean that element of the values array

of tie constraint % hose index in the array equals the oulvar of tie rule.)

If a cell is a king, friend, or rebel, and its owner is a constraint, then its rule must be a rule in
the rule set of the ctypc of the owner of the cell, and that rule's oulvar must be equal to the name
(an integer) of the cell. Moreover, the triggers cells of tle 1ule must all have values which would

cause the rule, if run. to return the integer which is the contents of the cell. (Very important!
This requirement implies that all values are well-founded upon premises.)

Oil the consistency of rules:

* Suppose that two rules in the rule set of some constraint-type have the same integer j for their
respective outvar components, and that the set of elements of the triggers of the first is a subset

(not necessarily a propert subset) of the set of elements of the trigger.s of the second. Consider
some instance of that constraint-type, and suppose that every pin which is a trigger cell of the
second rule (and therefore also of tie first) has a value. Consider the values which would be

produced by running either of the two rules in this same situation. If both values would be
integers, then they must be the same integer unless at least one of the rules is a &nogoodbeg
rule. (Indeed, in this situation one would expect the first rule, which gets less information, to be
a &nogoodbeg rule.)

e Consider a constraint, and an ordered sequence with distinct elements (rl, r ,.2., r,,) of at least
two rules from the rule set of the ctype of the constraint. Suppose each of the rules has a non-
null outvar, and that for each I < j < n the output pin of rule rj is a trigger cell for rule
rjFl~, and the output pin of rule r,, is a trigger cell for rule rl. Suppose that all the trigger
cells of all the rules have values, except those which are outl)ut pins of'all rules except r,. Now
suppose that the code of rule rl is run, producing a value which is then assigned to the output
pin of rl , then rule r2 is run, and so on. Then the value produced by r,, must agree in value
with the value its output pin already had unless some rj is a &nogoodbeg rule. (Example:

one adder nile takes a and b and computes c" then if die rule that takes b and c to produce
a were run, it ought to produce the same value for a. Note, however, that such a rule would
not ordinarily actually be run (rules are not awakened by values computed by other rules of tie
same constraint), precisely because this consistency is taken for granted.)

7.4. Tasks and Queues

Properties of tasks and queues:

o A queue contains, among other things, a bag of tasks. Queues are of two kinds: rule queues and
contradiction queues. (I am ignoring the *rebel -queue* here, for that is a minor variation.)
Rule queues may contain only rule tasks, and contradiction rules only contradiction tasks.



§ 7.5 NogoadSels 303

* A ruletask is a pair of a rule and a constraint. The constraint must be an instance of tie clype of

tie rule.

e Contradiction tasks are lists, and are of three kinds, distinguished by a special constant in the car

of the list. A @node contradiction task has two cells in its cadr and caddr. A @constraint

contradiction has a constraint for its cadr, and its cddr is an a-list associating cells with integers.
A @resol ut i on contradiction has a cdrwhich is an a-list associating cells with integers.

* At "task scheduling time", any task may be removed from any queue and executed. When that

task has completed, it is task scheduling time again. (It is at this time that all of the invariants

presented in this chapter must hold.)

Rule tasks:

* Consider any rule and any instance of that rule's ct'pe. Suppose that all the triggers cells for that

rule have values. Then one of three situations must hold: (1) At least one of the trigger cells is

a king, friend, or rebel (implying that its value was computed by some other nile for tie same

constraint). (2) A task pairing the rule with the constraint is in some rule queue. (3) Let x be
the result of running the code of the rule on the constraint in that situation. If x is @1 ose then
there must be a @constraint task on tie contradiction queue mentioning tie all triggercells

of the rule. Ifx is an integer then the output pin of the rule must be a king, friend, or rebel, and
have that integer as its contents.

" If the value q for a constraint's queued-rules satisfies (q (mod 2 J±I)) > 2i for some integer j

(i.e. the 2j-bit is set in the bit-vector represented by q), then there is in some rule queue a rule

task pairing that constraint with the unique rule in the rule set of the constraint's cype which

has an id-bit component equal to 2j.

Contradiction tasks:

* For every rebel cell there must be in some contradiction queue a @node contradiction task

mentioning the rebel cell and its king.

7.5. Nogood Sets

" A nogood set is a list whose car is the ISP symbol nogood and whose cdr is an a-list associating

distinct repositories with integers.

" A nogood set is in the nogoods of a repository if and only if the repository is mentioned in the

a-list of the nogood set. More specilically. the nogood set will be in that (unique) bucket of the

repository's nogoods whose car is the integer which the nogood set's a-list associates with the

repository.

" If a nogood set exists, then it must be the case that if all values were removed from the network,

excepting constant cells, and then default cells containing the integers specified in the nogood



304 CI lAPTIFR SEVEN CORR-CINF-SS

set were added to the respective repositories, then by running appropriate rules a contradiction

could be derived whose premises would be precisely the added default cells. (This invariant is

stated very loosely, of course. The point is that a contradiction could be logically derived in a
well-founded manner solely from the values in the nogood set.)

7.6. User Interface

Invariants of tie previous sections are concerned with the internal workings of the system.

There also need to be statements relating these internal workings to what the user types, to ensure

that the work done by the system actually reflects the meaning understood by the user.

" Whenever a task is to be scheduled, it is permissible instead to process a user request (which

may ofcoursc alter the network).

" If there are no tasks on any of the queues (in which case we say that the system is quiesceni),
then the network is free of contradiction, and the stated relationships hold among all quantities

in the network. The network structurc may then be understood to represent the sum total of all

preceding user input, and the contents of cells to represent validly deduced values.

" A sequence of user inputs (other than information queries such as why) can be understood in

terms of an equivalent sequence of inputs consisting only of create, variable, ==, and

di sal ow statements, in that order.

The remainder of this section would consist essentially of the language definition from §6.1,
which is therefore not repeated here.

7.7. Summary

iis chapter does not by any means indicate all the invariants which might possibly be stated.

It does present a large number of invariants, some of them rather complex, which ought to be

shown to hold.

One would also like to be able to exhibit a true multiprocessing implementation of a constraint

language. If it were based on this inplementation, one approach would be to identify the precise

conditions under which two tasks could interfere with each other, and then arrange interlocks so

that interfering tasks cannot run in parallel. Of course, the current implementation enforces such

an interlock, a rather stringent one requiring that no two tasks run in parallel! But, for example,

it is entirely plausible that many rule tasks could run in parallel, provided that they operated on

constraints sufficiently separated within the network, or that appropriate interlocks were placed

in process-setc with regard to die setting of cell contents and recording of nogood sets.



§7.7 Summtary 305

(T'ch n iq tes for proving properties of parallel programs of this type are described in [Owicki 19751
and [Gries 19771.)



306 CIIAPIIR SEiVEN CORREICNESS

[[his pagc intentionally left blank.1



Part Three

Abstraction

307

I I



11ie/. then Fidt' got up vii' the flor
And hie roiled over
And he looketd miet straight in the eve.
Anti You know what hie said?

-Once upon a lime
.Sonit'od' vat' to me.-
(This is the (log tuik in' now.)

Ii 'hat is Your
conceptunal

Continuity?

"Welli. I told him right then."' Fido said.
-/I siouid be east' to see
The' cnix of the biscuit
Is the apo)(strophe.-

WIel. * ou know. the tman wholi was taikin ' to the dtig
lootk('d at the dog and lie said

(Sort q1 warmn' in disbeliefi.
YTou can t say that!"'

He said.
'i/t tioesn'tW

A4nd you can't!
I wovn't!
A 1d( it don't!
It /iasn 'd!
It isn't!
It ev'en am 1!

And it .Vhouidn 't!
It eouidtI!"
Ht' toid me. "*No no o'
I told hin. '"Yets 'es yes!"
I said. "I do it a1/1 the time!"
(AIii 1 this hoogie a mess?)?

Frank iAppa (1974)
"Sfink foot"
Apostrophe

308



"The Old Oaken flucket"
-4lready is written:
There'I naught lejt to me
For an waqiphibrach fitlen.

-Gus Lewis Steele. Sr.

.4 stitch in time iN worth two in the bush
if, co,'lnt Iien, bth,, vou come to tem. Chapter Eight
-. ce'pting Fc'broaic. whic'h ha', ltent!-cight.

-The Rccrcnd )octor Coddles

Hierarchy

fl RI VIOUSI Y RIFS:NIFI:) VI:RSIONS of the constraint language hae been "flat". In this chap-

ter two fIorms of hierarchy are introduced. One stems from a macro-definition mechanism,
which allows the user to definte non-primitive constraint devices in terms of a network of other
constraints. One may think of this as a trivial kind of subroutine mechanism, one which does not
pemit recursion. This mechanism introduces a calling hicrarchy or an abstraction hierarchy, with
complex things defined in terms of simpler things to many levels. Ilie other form of hierarchy
stems from permitting the user to write expressions in the nested algebraic syntax described in
§6.2.5: this is a syntactic hierarchy, with complex cxpressionIs built from simpler ones. Both forms
of hierarchy allow networks to be expressed much more concisely.

8.1. New Features for the Constraint Language

Here the changes to the constraint language are described. Besides the expression syntax
and the macro mechanism, a special parsing and evaluating inechanisni will be introduced Which
will relieve the restriction of the syntax to I ISi,-evaluablc fiorms. The parser takes an S-expression
representing a request for the constraint system, and reduces it to a set of simple statemenLs. 'Ilic
evaluator acts oil these statements, usually just by calling the I ISP ev;ltiator (since much of tie
system is derived from the version in Chapter Six), but not always. In addition, a simple iteration

construct is provided.

309



310 CIA..\P IFF-II 61I 1' li1 RARCIIY

8.1.1. The User Can Iescribe Netiorks Using the Expression Syntax

All nested expressions are considered to be abbre iations for a collection of create and
statement (indeed. in the implementation described later in this chapter, expressions are processed

by constructing that equivalent collection and then processing the collection). The syntax will
thercfore be explained as such abbre iations.

Suppose that sym is the symbol for some constraint-type nuuned type, and that the names of
the pins for that constraint-type are x, y. z. then the expression

((sym name) a b c ...)

is a statenent equivalent to these statcmcnts:

(create name type)
(==.a (the x name))
(= b (the y name))
(= c (the z name))

Also, if any one of the argument forms is the symbol "%" then the expression is not a statement, but

rather denotes the corresponding pin of the constraint instance. Thus, for example,

(= ((sym name) a % c ...) foe)

is equivalent to

(create name type)
(== a (the x name))
( c (the z name))

(= (the y name) foe)

because the % was in the position corresponding to (the y name).

'liere must be exactly as many argument forms as there are pins for the specified constraint-
type (with two exceptions), and they are matched by order of appearance of argument foirms in the

mentioning expression and order of appearance of pin-names in the declaration of the constraint-
type. If no argument forim is % . then the expression is a statement and does not denote anything;

if one if %, then the expression denotes the corresponding pin. No more than one argument form

may bea .



§ 8.1.2 New Ieaturefi)r he (ountraint language 311

One exception to the rule is that one fewer argument form than the number of pin: may be
written. and no 7. written; in this case a % is taken to be an implicit argument forml preceding all

the others. The other exception is that an extra argument form may be written, which will become

the inib component of the constraint instance. In this way one can write (a s s ump t i on % 4 ), or
simpl, (assumpt ion 4 ). The special routine assume is not needed in the implementation to
construct an assumption: the necessary machinery falls out of this general notation.

As an example, a temperature con% ersion net%%ork may be described b the single statement

((+ add) fahrenheit ((* othermult) ((, mult) 9 centigrade) 5 %) 32)

which is cntirel) equivalent to the old definition

(create add adder)

(create mull multiplier)

(create othermult multiplier)
(= fahrenheit (the c add))

(= (the b add) (constant 32.))
(= (the a add) (the a othermult))

(= (the c othermult) (the c mult))

(= (the b othermult) (constant 5))
(= centigrade (the b mult))

(== (the a mult) (constant 9))

(Note that the var i able declarations have been omitted. The parser arranges to perform an
implicit var iab 1 e declaration during the parsing process for any variable mentioned in an ex-
pression, provided that the variable has not already been so declared. To get the effect of re-
declaring a variable, the user can just de s t roy it and then mention it again.)

If instead of a list ( sym name ) in the "operator position" of an expression, the user writes
simply name, then the parser generates a name of the form type- nnn.

If in place of an argument fonn the user writes "?", then no statement i.s generated for
that argument position: it means "the corresponding pin is not connected to anything here".

8.1.2. 'Thie User Can l)efine Non-prinmitic Constraints

A form is provided for declaring new constraints in terms of old ones:

(defcon name pin-names . body)

says that name is the name of a new constraint-type whose vars is the set of names pin-names.

Whenever an instance of narme is to be created, a copy of the network described by the statements

in body is constructed. Thereafter name may be used as any other constraint-typc name in create

statements.

- ',"-.



312 CIIAPIFR FIGIT I IlIIRARClIY

IF

F

FiGL;Ri S-1. User I)X-fion 4f he i F I-Xvice.

As an example, we can definc a "temperature convcrter device" which has two pins called f

and c which enforces the Fahrenheit-to-Centigrade relationship between the two pins:

(defcon temp-converter (f c)

((+ add) f ((o othermult) ((* mult) 9 c) 5 %) 32))

If later we were to say ((temp-converter tc) fahrenheit centigrade) then the

usual relationship between fahrenheit and centigrade would hold, mcdiated by an in-

stanceof temp-converter called tc.

One can of course refer to the pins of such a constraint instance by saying, for example,

(the c tc) to refer to the pin c of tc. One can also refer to the devices used in the

instantiated network. The expression (the add tc) refers to the adder of the network for

the instance tc of temp-converter; it follows that (the b (the add tc)) is a pin
which is connected to the constant 5. If tc had been part of another device zed then

(the b (the add (the tc zed) )) would name a pin. In this way we can use padihmaines to

refer to parts of parts of... parts of a complex constraint device.

As another example of a useful device, we can definc an i f device. a non-directional version

if the standard if-then-else-fl programming-language construct (which connects a "result" pin to

N"
.. l



§ 8.1.3 New Ieanoesfor the C(onstrain language 313

one of two "source" pins: or. from another point ot %iew, connects a source pin to one of two result
pins!):

(defcon if (result test then else)

(gate test then result)
(gate (+ I test %) else result))

(See Figure 8-1.) This definition uses an adder to perform logical negation. With this. one can then
write things like

(+ f (* (, 9 (if kelvin-flag (- c % 273) c)) 5 %) 32)

to enable c to be either a temperature Kelvin or a temperature centigrade according the the flag

kelvin-flag.

If any %ariables other than pins are mentioned in the hody of a de rcon definition, they

are taken to he local to ie definition- the variable is instantiated afresh for each instance of the

containing definition. If it is desired that every instance be hooked up to some single instance of a
global %ariable. then the construct (g loba l var) may be used Co refer to it.

8.1.3. Pathnames May he Written is Ahbreviated Form

A pathname such as ( the b ( the add ( the tc zed) ) ) may be contracted to simply
the b add tc zed). For even greater conciseness, it may be written simply as zed. tc. add. b.

Here the path is written in the reverse order, with the name of the original object first and succes-

sive selectors following, separated by periods. If the name contains a leading period, then the

name of the initial object is global: thus . roo is the same as (g1 obal foo). This is of course
similar to the component selection notation of many programming languages, and also to the file
pathlnamcs of Multics and UNIX. which use characters other than the period.

This facility is made possible by the introduction of the parser, which checks symbols in the
input for periods in their names, and expands them into appropriate the and g l oba l constructs.

8.1.4. 'M1e vector Construct Proflides Limited Iteration

The special form

((vector name) size interfiice common . body)

defines and instantiates a special kind of constraint-type, a vector consisting of 'iw copies of the
network defined by body, placed side by side. The size must be an integer--this limited facility does

-- L



314 CIi.PTR EIGHT FRARCIIY

g h

p x

q <ody> y

r z

FiGumI- -2. Iict(rial Rcprcscritation of the Id) Prototype for 11 Vector.

not allow for variable-length vectors. 'llie instances of body have names which are the integers from

zero (inclusive) to size (exclusive). 1

'lhe interface describes how adjacent networks in the series are connected. It is a list of
descriptors, and each descriptor is a list of four things:

leftedge left right rightedge)

The left and right must be names; they arc pin-names for the body. If two instances x and y of
the body are adjacent, with x to the left of y. then the right of x is connected to the left of'. 'the
instance of body at the left end of the row has its left connected to lJeftedge, which may be any
expression denoting a cell, or ?; similarly for the right of the instance at the right end of the row
and rightedge.

'111e list commo 1 is a list of names global to the vector construct which are to be made

available to every instance of body. ('Ibis set is deducible from context, but to simplify the present
implementation the user is required to declare these.)

As usual, if one writes (vector ... ) instead of ((vector name) ... ) then a name is
automatically generated.

Figure 8-2 shows a diagram representing the body of a vector defined as

((vector "oo) 7 ((a p x i) (b q y j) (c r z k)) (f g h) <body>)

1. For technical reasons the names are actually I iSP symbols whose print names are digit Onrings which look like
the way the integer would print 'Ihus the first instance in a vector has the name 10 1 or /0. not 0, to use lisp
Machine HISP syntax. As we shall see. when pathnanics with periods are used this distinclion is not apparent

.4



§ 8.1.4 New I-cauresfinr Mew (onirainl Language 315

h

I g h g I g h

b < body> y q <body>- y - q (body> y,

c- z r rz k

FOO.0 OO.1 FOO.6

FiGURrE X-3. An FnLirc Vector. and Its Cmnnections.

Figure 8-3 shows three of' dhc seven instances of' die body belonging to thc vector, and their connec-
tions. The left-hand pins p, q. and r. of each one are connected to the right-hand pins x, y. and
-z of the instance to the left. T[he Ieftmost instance has its left-hand pins conncctcd to a. b, and c,

while the rightmost hits its right-hand pins connected to i, j, and k. All of thcem havc thc common
pins f, g. and h connected to the external variablcs of the same name.

As at simple concrete examnple:

((vector foo) 4 ((input a b output)) () (+ b a a))

makes a length-foui' chain of adders like the one in Figure 3-2 (page 84). Ibis statement is entirely
equivalent to these declarations:

(DEFCON VECTOR-BODY-374 (A B) (+ B A A))
(DEFCON VECTOR-TYPE-373 (A B)

((VECTOR-BODY-374 101) A ?)
((VECTOR-BODY-374 111) (THE B 101) ?
((VECTOR-BODY-374 121) (THE B 111) ?
((VECTOR-BODY-374 131) (THE B 121) B))

((VECTOR-TYPE-373 FOO) INPUT OUTPUT)

The body, of the vector is made into a macro-constraint-type. Another macro-constraint-type is
declared for the entire vector, which mnakes four instances of the body and makes (the internal
connections between adjacent instances. Finally, this latter macro-constraint-type is instantiated,
the instance is named foo, and thc edge connections to input and output arc made. Note the



316 CHIAPTER Fi-Giuf I IIIRARC1IY

(deftype constraint-type 
-ue(ctype-name ctype-vars ctype-added- rules ctype-forget-ls

ctype-nogood-rules ctype-symbol (ctype-initfn ()))I
(format stream "(Constraint-type -S>" (ctype-name constraint-type)))

(deftype constraint
(con-name con-owner con-ctype con-values con-info (con-queued-rules 0))

I(format stream "<-(A-t.~):S>"
(con-pathname constraint) (ctype-naie (con-ctype constraint))))

(deftype macro-constraint-type
(mictype-nale mctype-pins inctype-allvars mctype-creations mctype-connector)
(format stream "(Macro-constraint-type -S>" (mctype-name macro-constraint-type)))

(deftype macro-constraint
(mcon-narne mcon-owner mcon-mctype mcon-values ncon-devices)

(format stream (A7 S>
(con-pathname macro-constraint)
(inctype-name (mcon-mctype macro-constraint))))

Comipare ti with Tablc 6-3 (page 204).

TAHLEi 8- 1. Nlacro-co nst rai ii -types and hiacro-consi rain LS

usc of ? to indicate no( connection, and thc "numerical" names for thc components of the vector.
F-or example. there is an equating between f oo. 0 .a and f oo. a, whiCh is in torn connected to
i put. Similarly, f00. 0 . b and f oo. 1 . a are co~nnected, as are f oo. 1 . b and f oo. 2 . a.

8.2. Implementation of Parsing and Macros

The code given here shows only the changes from the fuill system described in Chapter Six.
First the new data types are described, then changes to previously existing mechanisms, and finally

tie new top-lev'el loop and parser.

8.2.1. Ma~cro-constraints Are lInstainces of Nlacro-constraint-typcs

User-defined macro-constraints arc represented in a way very similar to ordinary constraints.
Table 8-1 gives tile data structuic definitions for constraint-types and maiicrn-conistriniit-types, for

constraints and mnacro-constraints. The differences arise froin the fatct that a constraint has pins and

rules, but a macro-constraint has a defining network. 'Ihle intertfice information is similar, however.

The list (actually an array) of pins wirs in a constraint-type becomecs two in a ii iac ro-constrai lt-

type: pins and all pars, the first being a subset of the second. Thie auIlvars is the set of all variables in



§ 8.2.1 Implementation of Parsing and Macros 317

tie dcfining network, while pins is the set of terminals, variables to which the "outside world" con-
nects. Primitive constraints have no internal variables represented by cells, and so do not require an

allvars set.

A macro-constraint-type does not have a symbol because in this simple implementation there

is no mcans for printing a macro-constraint in algebraic form. It does not have tables of rules, for
there are no rules. It does have, however, two components called creations and contector. lhe
crealions is a list of 3-lists, each 3-list describes one create operation it be performed when in-
stanialing the network fir an instance ol the macro-constraint-type. The first element of such a 3-
list is the name of tie device: the second is the type (either a constraint-type or a macro-constraint-
type) of the device- and the third is a datum to be installed in the inji component of the device (if
it is a primitive constraint). The connecor is a function of one argument which, when applied to a
macro-constraint instance, % ill make all the equatings necessary to wire up the network.

A constraint as well as a cell may now have an owner, which of course must be a macro-

constraint. The owner of a cell may now be a constraint or a macro-constraint.

-do:

k,

_ __•_ _ _ _ __,_ _ _ _



318 CIIAPI[R 116111 HIFRARCIIY

(deftype cell (cell-id cell-repository cell-owner cell-name
(cell-contents ()) (cell-state @lose) (cell-rule ())
(cell-equivs '()) (cell-link ()) (cell-mark ()))

(progn (format stream "-S (~A't.~)" (cell-id cell) (cell-pathnamo cell))
(select (cell-state cell)

((@puppet) (format stream " PUPPET>"))
((@slave) (format stream 

" 
SLAVE-f[ -S-1)"

(select (cell-state (node-supplier cell))
((@king) (node-value cell))
((@Puppet) 0))

(otherwise
(list 'bad-supplier

(cell-state (node-supplier cell)))))))

((@king) (format stream "-@[~* [OPPOSED]J KING -S)"
(plusp (node-contra cell))
(cell-value cell)))

((@friend) (format stream "-@[~* [OPPOSFDj
~] FRIEND -S>"

(plusp (node-contra cell))

(cell-value cell)))
((@rebel) (format stream " RLBEL -S AGAINST -S>"

(cell-value cell)
(if (eq (cell-state (node-supplier cell)) fking)

(node-value cell)
(list 'bad-supplier

(cell-state (node-supplier cell))))))

((@dupe) (format stream " DUPE -S AGAINST -S>"

(cell-value cell)
(if (eq (cell-state (node-supplier cell)) fking)

(node-value cell)
(list 'bad-supplier

(cell-state (node-supplier cell))))))
(otherwise (format stream " BAD STATE -S>" (cell-state cell))))))

Compare this with 'lablc 6-4 (page 206).

TABLI: 8-2. New Printing Format for Cells.

Note the user of dle function con-pathname in dl printing code for constraints and
macro-constraint. This causes a constraint to print like this:

<TC.ADD:ADDER>

which is the add device (an adder) of macro-constraint tc. Similarly, tile printing format for

cclls is changed (Table 8-2) to something like:

<CELL-78 (TC.ADD.B) PUPPET>

for the b pin of that Same adder.

The construction of padlnames is shown in Table 8-3. All that is necessary is to start fion a

given object and trace up the hierarchy of owners. The resulting padlnamne is a list of names, with

the (global) name of the ultimnate owner first, followed by successive selector names.

- !-



§ 8.2.2 Implemenlaiti of Parsing and Alacros 319

(def'un cell-pathoame (cell)
(require-cell cell)
(cond ((null (cell-owner cell)) (list (cell-name cell)))

((constraint-p (cell-owner cell))
(nconc (con-pathname (cell-owner cell))

(list (aref (ctype-vars (con-ctype (cell-owner cell)))
(cell-name cell)))))

((macro-constraint-p (cell-owner cell))
(nconc (con-pathname (cell-owner cell))

(list (aref (nictype-alivars (mcon-mctype (cell-owner cell)))
(cell-name cell)))))

(t (lose "Bad cell owner -S for -S." (cell-owner cell) (cell-id cell)))))

(defun con-pathname (con)
(cond ((constraint-p con)

(con-pathnaie-l (con-owner con) (con-name con)))
((macro-constraint-p con)
(con-pathnane-l (mcon-owner con) (nicon-naine con)))
(t (lose "Not a constraint: -S con))))

(defun con-pathname-l (owner name) 1
(cond ((null owner) (list name))

(t (require-macro-constraint owner)
(nconc (con-pathname owner)

(list (car (aref (mctype-creations (mcon-inctype owner))

TAlnIlT -3. Construction of' Paithiinres for Cells and Devices.

(defun cell-goodname (cell)
(require-cell cell)
(cond ((globalp cell) (cell-name cell))

((or (eq (cell-rule cell) *constant-rule*)
(eq (cell-rule cell) .del'ault-rules)
(eq (cell-rule cell) *parameter-rules))

(list (cell-name cell) (cell-contents cell)))
(t (cons 'the (cell-pathname cell)))))

Compare this with 'I able 6-51 (page 280).

TALE 8-4. The Best Namne for it Pin Is Its Pathnamce.

'llie ftnction cell -goodname call be sirnplified by letting it use cell -pathname (Tlable

8-4).



320 CIIAPTmA Burr I Iii RARCIIY

8.2.2. Ow~ners (Can Nois lie Constraints or Niacro-constraints

There are many places in the code which check for owners of cells, and which formerly re-
quired such owners to bc constraints. Now an owner can be at constraint or a macro-constraint.

Error checks must be mnodified to permnit cither kind of owner. Rather than reprinting many lincs of '
code just to show these simple miodification, I will just describe tile changcs here.

Functions which uscd to require constraints and nlow Must permit either constraints or macro-

constraints: gen-cel 1,T'able 6-6(page 211).

Functions " hich tested tie owner of at cell and assumned at non-null owner to be at constraint,
and which must nlow test that it is in fact at constraint (fathier than a nhicro-constraint): awaken.
TFable 6-28 (page 245); why(in the case that the cell has no v'alue), TFable 6-52 (page 279):
why- how(it now tests that tile owner is a constraint purely For error-checking purposes). Table

6-53 (page 280): fast-expunge-nogoods-markanid fast-expunge-nogoods-uninark.
lable6t-40(page264): des i red-premi ses-constraintand desired-preinises-unmark.
Table 6-55 (page 283), tree- form-trace(in thle progso form), Table 6-57 (page 285):
tree - f orm- deep, Table 6-58 (page 286): and tree-fo rni-unmark, 'Fable 6-60 (page 288).L

Also, there is one change in tree-form-chase (Tatble 6-59 (page 287)). n~ear dlie middle of

the code:

((cell-owner S)
(cond ((and (eq s cell) (not top)) (cell-goodnaie s))

becomes

((cell-owner s)
(cond ((or (and (eq s cell) (not top))

(macro-constralnt-p (cell-owner s)))
(cell-goodname s))

dhe effect being that if the chase comes to it cell owned by al niacro-const'aint then it must be a

Puppet, an artificial supplier, and so the chase may as well end there.



§ 8.2.3 Inlplinenhilion v] Parsitg an,llaIcros 321

I(deflnacro create (name type &optional (info ())) *create ',name ,type ,info))

J(defun -create (name type info)
(prog2 (*destroy name)

I(gen-constraint type name () info)
(run?)))

(defmacro destroy (symbol) -(*destroy ',symbol))

I(defun -destroy (symbol &optional (forced ()
(require-symbol symbol)
(and (boundp symbol)

(let ((val (symeval symbol)))
(cond ((cell-p Val)

(cond ((and (globalp valI) ( eq ( cell I-name valI) symbolI))
(*detachi Val)
(makunbound (cell -id valI))
(niakunbound symbol))
(t (lose "Illegal re-declaration of ~S." symbol))))

((constraint-p Val)
(cond ((or forced (eq (con-namte Val) symbol))

(forarray (p (coli-values Val)) (*detach p))
(makunbioun d symbol I
(t (lose "illogal re-declaration of -S." symbol))))

((macro-constraint-p Val)
(cond ((or forced (eq (mcon-name val) symbol))

(forarray (p (mcon-values val)) (*detach p))
(forarray (d (mcon-devices val)) (*destroy d t))
(makunbotind symbol))
(t (lose "Illegal re-declaration of -S." symbol))))

((or (constraint-type-p Val)
(macro-constraint-type-p Val)
(repository-p Val)
(rule-p val))

(lose "Illegal re-declaration of -S." symbol))

(t (maktinbound symbol)))))
'done)

Conipare [his with table 6-l1) Ipage 217) and lablc 6-41 (page 265).

TARL!: -5. Ocraling aoid rDeslro~ing Things.

8.2.3. NIacro-constrainlts (an Ile (reated aid D~estroyed

Thle c rea te forml. whlich specifics it llinC for it constraint and~ the confstfdlflt-typC to inlstanl-

Utiat, 11ow permits it tihird alrgutlllnt korm to be suipplied (Table 8-5). TIhis third form, it prcscnt, is
uised to fill ill the infii comlponenlt of' a conlstraint.

I'hc ruuttine *destroy blas been mnodified to he ahie to destroy inacro-collstraillts. anld not to

destroy micro-collstraillt-types. Also. the new argtllncnt f orc ed is a flag which fo~rccs constraints



322 CIIAPTIER liIGIrr HIERARCHIY

and macro)-constraints to be dcstroycd despite thc error-check that their names bc symbols: this is

needed in order to recursively destroy sub-dev'ices of a macro-constraint.I



§ 8.2.3 Implementiion of Parsing and Aacros 323

J(defun den-constraint (ctype name &optional (owner ()) (into ())
(statistic gen-constraint)
(and owner (require-macro-constraint owner))
(if owner (require-integer name) (require-symbol name))
(cond ((constraint-type-p ctype)

(let ((c (make-constraint)))
(or owner (set name c))
(setr (con-name c) name)
(set (con-ctype c) ctype)
(setf (con-owner c) owner)(setf (con-values c)

(array-or (tortimes (j (array-length (ctype-vars ctype)))
(gen-cell j c))))

(setr (con-into c)
(it (ctype-initfn ctype)

(funcall (ctype-initfn ctype) c info)
info))

(doarray (bucket (ctype-rorget-rules ctype))
(dolist (rule bucket)

(and (null (rule-triggers rule))
(enqueue-rule rule c @forget))))

c))
((macro-constraint-type-p ctype)
(let ((c (make-macro-constraint)))
(or owner (set name c))
(setf (mcon-name c) name)
(setf (mcon-mctype c) ctype)
(setf (mcon-owner c) owner)
(setf (mcon-values c)

(array-of (fortimes (j (array-length (mctype-allvars ctype)))
(gen-cell j c))))

(setf (mcon-devices c)
(array-of (fortimes (j (array-length (mctype-creations ctype)))

(let ((x (aref (mctype-creations ctype) j)))
(gen-constraint (cadr x) j c (caddr x))))))

(funcall (mctype-connector ctype) c)
c))

(t (lose -S not a constraint-type or macro-constraint-type." ctype))))

Compare this with Table 6-11 (page 217).

TABIE 8-6. Generating a Constraint or Macro-constraint.

The finction gen-constraint, which is used by create, is now capable of instantiating
either a constraint-type or a macro-constraint-type. Moreover, an instance may have an owner now
(which must be a macro-constraint), and if so the name will be an integer rather than a symbol.

When a macro-constraint-typc is instantiated, a macro-constraint is created and its nmne,

tnclype. and owner slots arc filled in. Then a cell is generated for every variable of die macro-
constraint, as determined by die alvarsarray of the Inciype. and these arc stored in a corresponding
array in die values component. Next all the devices needed by die defining network are created

(this will involve recursive calls to gen-constraint); these are stored in the devices array.

rL' ',



324 CIJAPTFR IGHT11 JlR\lwly

(defmacro the (x y) -(*the 'x ,y))

I(deflnacro my (x) -(the ,x *me*))

(defun *the (name con)
(or (cond ((constraint-p con) (lookup name con))

(oe((macro-constraint-p con) (macro-lookup name con))
(t ]us "Nt aconstraint: -S." con)))

(los -Shas no part named -S." con name)))

(defun lookup (name thing)
require-constraint thing)

(let ((names (ctype-vars (con-ctype thing)))
(celIls (con-values thing)))

(let ((n (array-length names)))
(do ((j 0 (+ j 1)))

((= j n) ()
(and (eq (are? names j) name) (return (aref cells j)))

(defmin macro-lookmmp (name thing)
requ ire-macro-constraint thing)

(let ((names (mnctypn-al ivars (mcon-ictype thming)))
(cells (uinon-values thing)))

(lot ((ni (array-length names)))
(do ((j 0 (+ j 1)))

((= j n)
(let ((creations (nctype-creations (mcon-mctype thing)))

(devices (mcon-devices thing)))
(let ((in (array-length creations)))

(do ((k 0 (+ k 1)))
((z k em) ())

(and (eq (car (aref creations k)) name)
(return (are? devices k)))))))

(ann (eq (aref names j) name) (return (are? cells j)))

CmmnmlarC this with 'lahlc 6-32 (page 253).

TAIII 1:. 8-7. Loonmking Up Pafis ofn a Macro-Constraiint.

Filially, dhc connlctor function is applied to the Ilacro-coiistraint instance ill order to wirc Lip thC

network.

8.2.4. Thew the Construct (',tl Hcfcr to Parts or a Nlacro])cvicc

Tlhe the colistrtictioli rnlst flow be able to locate naliled parts of Ceither consinhts or miacro-

conlstraint~s. The filnction * the now mierely di% ides intlo two cases, for llacro-conirainls it calls

muacro-lookup, which searchies first (lie naines array and theln the cr-eat ions array of dhe

rnacro-constraihlt-t y le. When~ t niatchihig namec is found, the correspondinlg elenlIelt of tie values
or dlevit-es array of dhe niacro-constlai tt is returned.

The my macro) is inlcluded ats a convenience: "mny x" is the s,,%mC ats "the x of *rne*". (See
Trable 8-7.)



§ 8.2.5 Iniplemewiaiion of Par-sing and Atacros 325

(defconst @quit (list @Squit)) ;quit from consys loopI

(defconst @nothing (list @tnothing)) ;something the consys loop won't print

(let ((rubout-handler ();variables controlling the
(read-preserve-delimiters ; Lisp Machine RIAD function

(format t "-&;Welcome to The Constraint System.")
(consys-loop J")

(defun consys-loop (prompt)
(do ( ) (( )) ;do forever (until explicit return)

(format t-" prompt)
(set4 - (si:read-for-top-level))
(and (eq - @lquit) (return))
(setq // (multiple-value-list (evaluate-input -)
(setq so* **)

(setq asoa

(setq s (car II);save first value
(dolist (value I

(cond ((not (eq value @nothing))
(terpri)
(funcall (or print #'prinl) value))))

(setq +++ )
(setq ++ +

(setq + -l

TAWBIF8-8. The Top-tevel Rixj-Fa-Pin' op for the ('Oiistraint SyStemn.;7

8.2.5. A lReaid-EvaI- Print" Loopl Processes User Requests

We have discussed all thce changes to previously existing code-, these had primarily to do with

thc introduction of macro-constraints. The all-new code to be discussed has primarily to do with
the newly introduced surface syntax. It includes a top-level processing loop and a parser. the
loop is responlsible for reading user input, parsing and evaluating it, printing any results, and tilen

iterating. Parsing occurs in two stages: thc LiiSP fuinction read reads in a string of characters and
produces a I ISP, S-expression, which is then further processed by tile parser to be presented here.

17he top-level loop is shown in fable 8-8. It is typical of iisrsi interaction loops, aiid uses the

MACI tSr/I isp Machine i S11 conlventions b1r "inlteractionl variables'. Thle variable + always holds

tie last thing typed in by the user, and ++ and +++ the two things b~efore that. The variable -

has the expression being p~rocessed. The variable // has a list of all the v~aliucs returned as a rsult
Of eValating the last expression, and * has the first of these values. ** and *** beign earlier

instances of s. These variables are purely for user convenience, so that hie can refer to partial
results without losing them if lie forgot to set some variable to the computed value.



326 CIIAVlI-R EIGr[ I IIIRARCIIY

The important thing about this loop is that it handles the user interaction, prompting, reading.

processing. and printing. The two constants @qu i t and @not h i ng proide special control. One

causes the loop to terminate, reverting to the i.isp system: the other is a "magic value" that will
not be printed. This allows a request such as == or why to print nothing. rather than DONE
or Q. E . D. (which some users find annoying). Though those trivial changes are not shown here,
functions such as why should in fact be altercd to return @noth i ng after printing a message.

IV

ki



§ 8.2.6 Implementation of Parsing and lacros 327

(defun evaluate-input (input)
(cond ((or (atom input) (eq (car input) 'the))

(eval (parse-thing input)))
((and (symbolp (car input)) (get (car input) 'request))
(eval (cons (car input)

(forlist (x (cdr input)) (parse-thing x)))))
((eq (car input) 'defcon) (define-macro input))
((eq (car input) 'destroy)
(dolist (x (cdr input)) (*destroy x)))
((eq (car input) 'lisp) (eval (cadr input)))
(t (multiple-value-bind (creations equations definitions)

(parse-statements (list input) () ())
(dolist (stmt creations) (eval stmt))
(dolist (stmt equations) (eval stmt)))

@nothing)))

(dolist (x '(stats reset-stats variable queue-stats reset-queues
run? disallow change retract forget dissolve detach
disconnect disequate why why-ultimately what))

(putprop x t 'request))

TABLE.I 8-9. Dinination of Input Forms.

8.2.6. User Imput Forms Are Divided into Three Categories

The top-level loop calls eval uate-i nput (Table 8-9) to process the user input This func-
don categorizes the input form as a statement (a create, ==, or vector form), a request, or a

descriptor for a thing (which at the top level is interpreted as a request for the value of that thing).
Atoms and the-forms are things. A list whose first element is a symbol with a non-null request
property is a request (note the definitions of such properties by the dol s t form in Table 8-

9); such requests are assumed to take "things" as their arguments. The defcon and destroy
requests are handled specially, because they take things other than "things" as arguments. A list
whose first element is l i sp is an escape, so that iisi expressions can be evaluated easily from
within the consys loop; this is a special user convenience, not strictly speaking part of the

supported constraint language. Any other form is taken to be a statement.

8.2.7. Defining a Macro Generates a Macro-Constraint-Type

1he function define-macro parses a defcon request of the form described in §8.1.2.

After the pieces of the form have been picked out and checked, two "environment" structures are

created, one for cells and one for constraints. Each environment is a list cell whose cdr is an a-list
(the a-list for devices is initially empty). 'lThe car is not used for anything: the use of a header cell

allows new entries to be added by using a side-effect. Each a-list pair consists of a name and a flag;

.o-.



328 CIIAPTiFR Etuirr I Ii.RAR(IIY

(defun define-macro (input)
(let ((name (if (atom (cadr input)) (cadr input) (caadr input)))

(symbol (it (atom (cadr input)) (cadr input) (cadadr input)))

(pins (caddr input))
(body (cdddr input)))

(require-symbol name)
(require-symbol symbol)

(let ((conenv (list 'conenv))
(cellenv (cons 'cellenv (forlist (p pins) (require-symbol p) (list p)))))

(multiple-value-bind (creations equations definitions)

(parse-statements body cellenv conenv)
(gen-macro-constraint-type name

symbol
pins
(torlist (x (cdr cellenv)) (car x))

creations

equations)))))

rAIiI. 8-10. Proccssing j Ma4cro I)Dfinition.

in conenv the flag indicates whether a create for that device has been encountered yet, and in

cel l env the flag is unused. ('l'hc environmcnts have thc samc structure so that common routincs

can proccss ditm.) Initially all dic pin names arc in ce Il env.

Thc body of a macro dcfinition should bc a list of statcnlcnts, and thesc arc parsed in the
given elvironments. ([he parsing process may altcr the c, vironmcnt structures.) The statcmcnt

parsing produces three rcsults: a list of create forms. a list of == foris, and a list of defcon
'orins (which result only frore vector fonns, and can he ignored (as they arc here) becausc they

arc processed when gcnerated). The creations and equations, along with all the names now in

cellenv arc passcd to gen-macro-constrain-type.

k..



§ 8.2.7 linpleineniauion of P~arsing and Alacros 329

(defun gen-macro- constra int- type (name symbol pins allvars creations equations)
(require-symbol name)
(*destroy name)
(let ((ct (make-macro-constraint-type)))

(set name ct)
(putprop symbol name 'ctypename)
(setr (mctype-name ct) name)
(setf (nictypo-pins ct) (array-of pins))
(setf (mctype-allvars ct) (array-of alivars))
(setr (mictype-creations ct)

(array-of (forlist (c creations)
(or (eq (car c) 'create)

(lose "Non-creation -S for GEN-MACRO-CONSTRINT-tY(PE." c))
(or (and (boundp (caddr c))

(or (constraint-type-p (symneval (caddr c)))
(macro-constraint-typo-p (symeval (caddr c)))))

(lose *'Not a defined constraint-type -S." (caddr c)))
(list (cadr c) (symeval (caddr c)) (cadddr c)))))

(let ((codename (qen-name name 'connector)))
(setf (mctype-connector ct) codename)
(fset codename *(named-lambda ,codename (*me*)

(let ((*run-rlag. ))
,@equat ions
(run?))))

(cominple codename))
Ct))

TAB T11.II. Cicuc 'ati ig a Mac ro-Constraint-Type.

This ftlnction (Tlable 8-11) generates a itcro-constrainit-c-ype data structUre. The natne, pins,
anld allvars slots arC filled in. 'The list of creations is pre-processed, inl that ie keyword create
is rcmnovcd, and dieC narnc of tile type to hc instantiated is replaced by tile data sti ucturc ftur thc
type itself, whlich nmust be a constraint-type or a miacro-constraint-type. Finally, the conn~ector

function is constirlcted fromn thle list of citiations. Thecse Cquafiolls will all refcer to a local vari-

ablc x as "(my X )**, LUsing tile my mnacro of [able 8-7, so all that is needed is to Cxctte these
equations whcrc tile vis15 variable *me* is definecd. Also, the *run-fi ag* is hound to ( )
to prevent propagation frontl Occurring ulntil thc whole network is wired, to inoid wasted eff'ort.

Once a lamibda-expression (actuially at i sp Machine L ISP "iaie-and"expression) hats been

constrtucted, it is assignied to tile "function cell" ofa generated 1.ISP symnbol, and tllen the comin le

fuinction is applied. The restult is that the connector fuinction is at comipiled iIS ISP fnction. (TIhe Call

to camp i e couild be omnitted, alid e~erything wotuld still work, only miore slowly.)



330 CIIAP1V'IR Burlr liii RARCIIY

(dqclare (special *inputs* *equations* *creations* *definitions*))

(defun parse-statements (inputs cellenv coneov)
(do ((*inputs* inputs)

(*equations* 0
(*creations* 0
(*definitions* 0)
((null *inputs*)
(dolist (x (cdr conenv))

(or (cdr x) (rorniat t -'&;Warning: constraint -S not defined." (car x))))
(return *creations* *equations* *definitions*))

(let ((stint (pop *inputs*)))
(cond ((atom stint) (lose "Internal error: atomic statement -S." stint))

((eq (car stimt) '~z)
(let ((things (forlist (z (cdr stint))

(parse-thing z cellenv conenv ())
(do ((th things (cdr th)))

((null th))
(dolist (x (cdr th)) (push (== ,(car th) xa) *equations*)))))

((eq (car stmnt) 'create)
(push stmnt *creations*)
(and conenv

(let ((slot (assq (cadr stimt) (cdr conenv))))
(cond ((null slot) (push (cons (cadr stmnt) t) (cdr conenv)))

((null (cdr slot)) (rplacd slot t))
(t (lose ";Constraint -S multiply created."

(cadr stmt)))))))
((eq (car stmnt) 'vector)
(parse-vector (gen-name 'vector)

(cadr stmnt) (caddr stint) (cadddr stmnt) (cddddr stint)))
((and (not (atom (car stmnt))) (eq (caar stint) 'vector))
(parse-vector (cadar stint)

(cadr stmnt) (caddr stint) (cadddr stmnt) (cddddr stmnt)))
(t (parse-constraint stmnt t))))))

8.2.8. Statenients Are Reduced to Simnple Statemnents

The function pa rs e -statemen ts (Table 8-12) miaintains a qucuc i inputs. which is a

queuc Of StaccrnetS to bc processed. The rcsts will be a list of equations. a list of creations, and

a list of (alrcady processed) definitions (which is returned i)rilflarily so that pa rse- statements
can be tested independently of thc rest of the systcrn and the results examnined).

The ==Statement is genleralized so that more than two (flings call be equated: each thing is

directly equated to every othler thing (so that equlating n things results ill binary cqutings).

The things are all parsed using parse-thing.



§ 8.2.8 Implemntiauiun of Parsing and Alacros 331

A c reate statcement is output to the * crea t ion s* list, and an entry is located or created
in conenv if that environment is not null (thc cnv'ironmcnts arc niull ror top-level statements and
non-null when parsing statements for a macro body).



332 Ci IAVIlR lilGHl HiiRTARCllY

(defun parse-constraint (form stmtp)
(cond ((symboip (car form))

(parse-constraint-p ins
(car form) () (cdr form) stmtp))

((and (not (atom (car form)))
(symboip (caar form))
(symboip (cadar form))
(null (cddar form)))

(parse-constraint-pins
(caar form) (cadar form) (cdr form) stmtp))

(L (lose "Unknown form: -S." form))))

(dfnparse-constraint-pins (ctypesym userconname arguments stmtp)
(require-symbol ctypesym)
(and userconname (require-symbol userconname))
(or stmtp (memq 14 arguments) (push 'i% arguments))
(let ((ctypename (get ctypesym 'ctypename)))
(or (and ctypename (symbolp ctypename))

(lose -S is not the symbol for any constraint-type." ctypesym))
(let ((ctype (symeval ctypename))

(conname (or userconname (gee-naine ctypename))))
(or (constraint-type-p ctype)

(macro-constrait-type-p ctype)
(lose "Unkniown constraint type: -S." ctypename))

(let ((pinarray (if (constraiat-type-p ctype)
(ctype-vars ctype)
(mctype-pins ctype))))

(let ((args (cond ((= (length arguments) (array-length pinarray)) arguments)
((z (length arguments) (4 (array-length pinarray) 1))
(reverse (cdr (reverse arguments))))

(t (lose "Wrong number of arguments to -S: -S."
ctypenane arguments))))

(info (and (not (z (length arguments) (array-lengthi pinarray)))
(car (last arguments)))))

(push '(create ,conname ,ctypename @S(and info (list info))) *inputs*)

(let ((result ()))
(do ((j 0 (+ j 1))

(a args (cdr a)))
(( j (array-length pinarray)))

(cond ((eq (car a) 1%)
(coed (result

(lose "Multiple %Is to -S: -S." ctypename arguments))
((not stintp)
(setq result '(the ,(aref pinarray j) ,conname)))

(t (lose "Statement fed %~ to -S: -S."
ctypename arguments))))

((not (eq (car a) I?))
(push '(== (the ,(aref pinarray j) ,conname) ,(car a))

* inputs*))) )
result))))))

TA i:- 13. Parsing :in -Algcbramic Fxprmssin-.

Vectors arc fanned oult to parSe-vector. All other forms are asstumled 1o be network
dcscripuions cxprcscd ill tte neCsted algebraic forin.



§8.2.8 I'npleineniaiiotn of Parsing and Mlacros 333

Thie function p arse -con s tra int (TFable 8-13) determnines whecther or not the constraint
to be generated has been given a name by thc user. 'I lie F'unction pars e -c on s train t -p in s
deails with the details of' the % and ? convenltionls, per-forms error checking, and then decomposes
die forni into equivalent create and ==statenments which are then enqucued on *inputs*
for re-processing. 'The flag s tmtp is truc iff the given form is a statemecnt (iniplN ing that no % is

permitted). in which case ()is returned. If s tintp is false, then the v'aluec is a name fo~r the pin
corresponding to the (explicit or implicit) Occurrecnce of %



334 CHANTR i~ ur 1-1IIRARCIIY

(defun parse-thing (thing &optional (cellenv ))(conenv C)(simplep t))
(cond ((nuniberp thing) *(constant ,thing))

((symboip thing)
(parse-recursive-symbol (get-pname thing) cellenv conenv thing))

((atom thing) (lose "Unknown atomic thing: -S." thing))
((and (memiq (car thing) '(default parameter))

(fixp (cadr thing))
(null (cddr thing)))

thing)
((eq (car thing) 'global)
(parse-global-symbol (cadr thing) t))
((and (eq (car thing) 'the) (cddr thing))
(parse-the (cdr thing) conenv))

((not simplep)
(parse-thing (parse-constraint thing ()) cellenv conenv C)

(t (lose "Non-simple thing: -S." thing))))

TABIT 8-14. Par-simg a Reference it) a Thing.

(let ((pos (string-reverse-search-char VI. pname)))

(od((null pos)
(parse-simple-symbol (or thing (intern pname))

(if thing cellenv conenv)
(not (null thing))))

((zerop pos)
(parse-global-symbol (intern (subString pname 1)) (not (null thing))))
(t (the ,(intern (substring pname (+ pos 1)))

*(parse-recursive-symbol
(substring pname 0 pos) cellenv conenv C)))

TABLE' 8-15. P arsing a Pathiaiiie Written with Periods.

8.2.9. Pathnames with, Periods Arc One of Many Forms or Reference

The function parse-thing reduces a reference to a "thing" to either a simple variable
inme, a pathnamc, or a constant or similar form. A numnber is coivcrtcd to a cons tan t form,
sothatoncmnay writc (+ x 3) rathcrthan (+ x (constant 3) ). Symbols arecexam incd for

periods by parse- recurs ive-symbol. A def aul t or parameter form stands as written.
A global form rcfcrstoaglobal variablc~and isgivcn to process-global-symbol. A the

form has its own processor. Anything cise is regarded as a nested algebraic expression, which must
have an explicit or implicit % in it; parse-constraint is used to parsc that form and return
the name of a pin. which is dilCn (for generality) re-proccssed by pa rse - th ing.



§ 8.2.9 Iniplemniaiioti of Pa, sing and Atacros 335

(defun parse-simple-symbol (sym env celip)
(require-symbol sym)
(cond ((null env) (parse-global-symbol sym cellp))

((assq sym (cdr env)) (my ,sym))
(t ikpush ( list syni) (cdr env)) bmy ,sym))))

lABL 8-16. Parsing a *Sinp (IlIa!) S~ nibol.

Atomic syrnhols are pulled apart by p arse-recursive-symbolI (Tlable 8-IS). If a"." is
found ill the print namne of (lie symbol. theni dhe symbol is divided into two parts, thc part before

thc last ". "and thc pait after it. TIhe part after is the selector for a the ibrin, aind the part before
is recursively parsed. As anl efficiency trick. th i ng is passcd in. so that if the namec contains no "

then the thing can bc returned directly without thc expense of a call to in te in. Also, at lcading

'"indicates a global symbol, as discussed in §8. .

When not within a macro body, all symbols arc global. Within a macro body, a simple symbol
(not exp~licitly made global hy a leading *~"or use of the glIobal form) is local, implying that

it must be entered into the environment and that it should be referred to as "my" (that is, the

macro's)symbol.T1he function parse-s impl e-symbol ([able 8-16) performs these operations.



336 C1IAPIIFR F11ii IERARCHlY

(defun parse-global-symbol (sym coulp)
(require-symbol sym)
(cond ((not (boundp sym))

(cond (cellp
(putprop sym t 'special) ;compiler nonsense
(set syni (gen-cell sym)))))

((not ce lip)
(or (constraint-p (symeval sym))

(macro-constraint-p (symieval syn))
(formjat t -&;Warning: -S has a non-constraint value -S."

sym (symeval syni))))
(t (or (and (coil-p (synieval sym))

(globalp (symeval syin)))
(format t -&:Warning: -S has a non-cell value -S."

sym (syoneval syni)))))
sym)

TAI 8- 17. P~arsinug a G lobail S In 11.

(derun parse-the (list conenv)
(ir (null (cdr list))

(parse-simple-symbol (car list) conenv )
,(the ,(car list) ,(parse-the (cdr list) conenv))))

1 AMI 1: 8-18. Paisiiig ai the Fxpressioi.

If a global symnbol has no (1 1%11) value, then a ccll is autolllatically generated for it in
parse-global -symbol (Table 8-17). TIbis relieves thc uscr of the constraint language froin
hav ing to declare all his variables. If it docs have a value, then it had bctter bc thc desired kind of
object (a cell or a constraint, as dctermnined by file flag cell p).

T'he only purpose of the function parse- the (Table 8-18) is to allow extended pathnamces

of the formn ( the a b c . .. ). I'is could just as easily have becen put into the I 1 mnacro
definition of the, but I thought it Would be mnore appropriate to do it here, as part of the mnove
away From dependence on the I IS!' evalutor.

8.2.10. Vcctors Are lasily Deflined in Ternis of Macros

The function parse-vector (Table 8-19) reduces a vector stateient to equivalent state-

ineilis and two mlacro-constraint-type definitions. one for the body and one for the vector of the
body. 'I'le def ine-macro Function1 of lahe 8-10 is applied to the two definitions to cause the

macro-constraint-types to exist immnediately: unfortunately, this miust be dlone before the other
statenents can even bie parsed properly. Ani examiple of the results ol proc'essing a vector formn

appears in §8.1.4.



§ 8.3 I:xanile of thle Use of Alacr-onstraints 337

(defun parse-vector (vectornano size interface conmmon body)
(require-integer size)
(let ((vectortypename (gen-itame 'vector-type))

(bodynane (gen-name 'vector-body))
(vectordev ices (fortinies (j size) (intern (rormat () -D" j)))))

(do ((x interface (cdr x))
(lowpins ')(cons (cadar x) iowpins))
(highpins ')(cons (caddar x) highp ins)))
((null x)
(let ((bodydef

-(defcon ,bodyname ,(append lowpins lhighpins common) ,@body))

(vectordef

(defcon ,vectortypename ,(append lowpins highpins conmmon)
,@~(do ((d vectordev ices (cdr d))

(low Iowpins (forlist (h Imighpins) (the ,h ,(car d))))

(s '() (cons .((,bodyname ,(car d))
@§low
:@(if (cdr d)f

(forlist (ignore highpins)'?
highpins)

,lcommon)
s) ))

((null d) (reverse s))))))
(define-macro bodydef)
(define-macro vectordef)
(push bodyder *definitions*)
(push vectordef *definitions*))

(push .((,vectortypename ,vectorname)
,t(foriist (x interface) (car x))
,@(forlist (x interface) (cadddr x))
@commnon)

*inputs*)))))

TABuIT-8-19. ar'sing a vector Slatrcment.

8.3. Example of the Use of Macro -Constraints

Here wc will defile a rnacro-constraint-typc which will conistrain one nulilber to be tile gcd
of two others, using thc loriliulatioii of § 1.1.1. It will use a vct~or, die body of which peiforis one

step in the shiplified (using subtraction ralhcr (hail division) lFiclidean algoriihm. Wc will start in P

tile I Isp1 systemn, and enter consys.

(consys)
;Welcome to The Constraint System.
J:(defcon gcd7 (x y g)

((vector v) 7 ((A qin qout endi) (y rn rout end?)) (g)
(:rout qin)



.338 CIIAPtiER HutIr I IIIIRARCIIY

FIGURF 8-4. One Stapc of a GCD Computation.

(<I p qin rin)
(gate p qout (+ rin qin X))
(gate (+ 1 p %) qout (+ qin rin X))
(gate (= qout 0) rout g)))

<Macro-constraint-type GCD7>

The "] : " is de (rather silly-looking) prompt for user input to the constraint system. Our first

input defines a macro-constraint-type gcd7 which constrains g to be the greatest common divisor
of x and y provided that it ci be found in seven substraction steps or fewer. (We will have more

to say later about this arbitrary limittion!) It was certainly written with a functional view in mind,

and so I shall describe it that way: but it is written in a constraint language, and so of course can
run backwards" to the extent permitted by its structure and the local propagation technique.

An instance of gcd7 is a vector of seven steps. ,ach step (see 'igure 8-4) has two pins on die

left called q i n and r i i and two on the right called qout and rout (which connect to die q i n

and riin of the next step to die right). In each stage, rout is equal to q in, and qout is equal to

either the difference between q i n and r i n or the difference between r i n and q i n. '11e value



§ 8.3 Example of the Use qfA facro-(onstraimvs 339

of p determines .hich one is used: p is derived by coinkaring q in and r i in such a way that

qout will bc the positive diffcrence. Finally, g is equal to rout if qout is zero. It is casy to see

thecthecgcd of qlout and rout is diecsamecas that of q in and r i , and that if qout is zero Olen

rout must in faict be the gcd.

The boundary conditions are that the q inI and r i n of the lefimost stage arc equated to x

and y respecctively. The variables end 1 and end2 could have been queCstion inarks;, they arc notH
used for any) thing in particular. hut using names will allow uIS to examline them.

Now let uIs create an instance of g cd7 called ftoo, and set x to 6 and y to 10.

]:((gcdl foo) 6 10t answer)
]:answer
<CELL-79 (ANSWER) SLAVE 2>

Note that no result was printed for dhe creation of the instance (because the top-level l00o) saw

the "niagic Value" @noth i ng).T'1e result an swe r is indeed 2.

We can now look at variouIs Cells of the network and inspect their values.

]J:oo.endl
(CELL-Bi (FOO.ENDI) SLAVE 2>
]:too. end2
(CELL-83 (FOO.END2) SLAVE 0>

'f'lic two final values are 2 and 0, which is consistent with a gcd equal to 2.

]to. v. 0. q0Ut
(CELL-473 (FOO.V.O.QOUT) SLAVE 4>
]: to. v.1. qoUt
(CELL-413 (FOO.V.1.QOUT) SLAVE 6)
]Jfoo.v.2.qout
<CELL-353 (FOO.V.2.QOUT) SLAVE 2>
3: too. v.3. qout
<CELL-293 (FOO.V.3.QOUT) SLAVE 4>
]:foo.v.4.qout
<CELL-233 (rOO.V.4.QOUT) SLAVE 2>
3: oo.v .5 .qout
(CELL-173 (FOO.V.5.QOUT) SLAVE 2>
3: too.v .6 .qout
(CELL-109 (FOO.V.6.QOUT) SLAVE 0>

'I'lis is the sequence of intermediate values computed. (Compare this with sequences in § 1.1.1).

Note how easily we can refer to parts of parts of a vector, using the pathnamc notation. (We can

also examine constraints as well as cells:

3: to. v
<FOO. V:VECTOR-TYPE-65>



340 CIIAPIFR FiGirr lll:RARC1lY j

]:foo.v.4
<FOO.V. 4 :VECTOR-BODY-66>

though that is not officially part of the language.)

Now let us examine how the value for answer was dcduced.

]:(why answer)
;The value 2 is in ANSWER because it is connected to (THE FO0 V 161 GATE-73 B)

and <FOO.V.6.GATE-73:GATE) computed it by rule <B GATE-RULE-21(P,A)>

from: CELL-113 (P) = 1, CELL-115 (A) z 2.

Again, no "return %alue" (Q. E. D. ) is printed now because why returns @no thing. 'I'lc

output could be cleaned up a little by changing cel I -goodname io return not a the-style

pathname Ibut a nalne with periods in it.

]:(why-ultimately answer)

;The value 2 is in ANSWER because it is connected to (THE FO0 V 161 GATE-73 B)

and it was ultimately derived.

(It says that it was "ultimately derived" because only constants were involved. and constants are
now omitted from the set of premises for a deduction.) A number ofconnections were involved:

;These :onnections were involved:

(THE FO0 V 161 EQUALITY-74 B) == (CONSTANT 0),

(THE FOO V 161 GATE-70 B) (THE FO0 V 161 ADDER-71 B),

(THE FOO V 151 GATE-68 B) (THE FO0 V 151 ADDER-69 B),

(TILE FOO V 141 GATE-70 B) (THE FO0 V 141 ADDER-71 B),
(THE FOO V 131 GATE-68 B) (THE FOO V 131 ADDER-69 B),
(THE FO0 V 121 GATE-70 B) (THE FO0 V 121 ADDER-71 B),
(THE FO0 V Ill GATE-68 B) (TILE FOO V III ADDER-69 B),

(THE FO0 V I1 GATE-70 B) (THE FO0 V 101 ADDER-7l 8),

(THE FO0 V 101 ADDER-72 C) (CONSTANT 1),

(THE FOO X) == (CONSTANT 6),

(THE FOO V RIN) == (THE FO0 X),

(Forty connections omitted.]

(TILE FOO V 161 ADDER-72 A) == (THE FO0 V 161 P),

(TH1E FOO V 161 GATE-70 P) == (THE FOO V 161 ADDER-72 B),

(THE FOO V 161 QOUT) == (TIlE FO0 V 161 GATE-70 A),
(ilE FO0 V 161 EQUALITY-74 A) == (THE FO0 V 161 QOUT),
(THIE FOO V 161 GATE-73 P) == (THE FOO V 161 EQUALITY-74 P),

(THE FOO V 161 G) == (THE FO0 V 161 GATE-73 B),

(THE FO0 V G) == (TIlE FO0 V 161 G),

(THE FOO G) == (THE FO0 V G),

ANSWER == (THE FO0 G).

Now let us get up the courage to ask what the entire computation was! (I have taken the

liberty of reformatting the output by inserting white space and line breaks.)



§8.4 Discussion of the Afacro Language 341

]:(what answer)
;The ,alue 2 in ANSWER was computed in this way:

ANSWER (GATE (= (GATE (+ 1 (<! (THE FOO V 151 GATE-68 A)
(THE FOO V 141 GATE-70 A))

0)

(+ (THE FO0 V 151 GATE-68 A)
(THE FOO V 141 GATE-70 A)

0)

(THE FO V 151 GATE-68 A)

(THE FOO V 141 GATE-70 A)
(GATE (+ 1 (<! (THE FOO V 131 GATE-68 A) (THE FOO V 121 GATE-70 A)) %)

(+ (THE FOO V 131 GATE-68 A) (THE FOO V 121 GATE-70 A) %))
(THE FOO V I1I GATE-70 A)

(GATE (+ I (<! (Tie FO0 V III GATE-68 A) (THE OO V 101 GATE-70 A)) %)

(+ (THE FOO V II2 GATE-68 A) (THE FOO V I GATE-70 A) %))
((THE FO V 0 GATE (+ A (<T 10 6) %) %2 (+ 10 6 A))

(THE FOO V I1I GATE-68 A) -
(GATE (0t (THE VO0 V 101 GATE-70 A) 10)

(+ 10 (rTHE FOG V 101 GATE-70 A) )
; (THE FO0 V 131 GATE-68 A) 4

(GATE (<! (THE FO0 V 121 GATE-70 A) (THE eo0 V Ill GATE-68 A))

(+ (THE FO0 V Ill GATE-68 A) (THE FOO Vl121 GATE-70 A) 7)
; (THE FO0 V 151 GATE-68 A) 4-

(GATE (<! (THE FOO V 141 GATE-70 A) (THE FOO V 131 GATE-68 A))
x

(+ (THE FOO V 131 GATE-68 A) (THE FOO V 141 GATE-70 A) X))

For all the use of "algebraic" notation, this is fairly hard to wade through! Part of the problem
is that the explanation system doesn't take advantage of the macro-call hierarchy to produce sum-

mary explanations. One would like an explanation to go something like "The answer was computed

by roo.v.6 from its qin and r in, which itgot from foo.v .5, and so on, down to foo.v.0

which got its inputs from too. x and foo. y."

8.4. Discussion of the Macro Language

In this chapter we have added to die constraint language an abstraction cap bility in the form
of a simple macro mechanism, a limited iteration feature, and a front-end command processing



342 CIHAPIrR IGIur ItlIRARCllY

loop and parser to permit some useful syntactic abbreviations. I am pleased with the front end.
for the most part, but the nacro and iteration features are clearly deficient compared with what a
useable constraint language requires. lere I discuss these deficiencies and possible solutions.

Every time a macro-constraint-type is instantiated, a complete copy is made of tie defining
network structure. This is wasteful of space- it is as if every time a constraint-type were instantiated
a copy were made of all the rules. Now certainly new cells must be created for each macro-instance.
because they hold values that are dilferent for each instance. The reason a complete copy must be
made is that presently the connectivity information is also stored in the cells. Cells point at devices
and other cells, which in turn point back, and these back-pointers therefore require individual
copies of each device data structure. It ought to be possible to re-design the data structures in such
a way that the macro-constraint-type contains a single copy of the connectivity and device informa-
tion as a full network with full back-pointers (presently that in formation is stored, but as directions
for construction, not as a network). Then an instance would contain only an array of cells, which
would determine their connectivity by referring to the "network template" in the macro-constraint-
type. This is entirely analogous to the situation with constraints and constraint-types. (Of course,
this idea trades time for space in requiring indirection to the constant, shared template. Indeed,
Borning seems to do something similar to this in IIIINGIAll [Borning 1979]. But such sharing may
not be desirable in a multi-processor constraint language implementation.)

A more important problem is that when a macro-constraint is created, all of its parts must first
be fully instantiated (in the current implementation). 'bis makes it impossible to write recursively
defined constraints. One might like, for example, to write a factorial constraint:

(defcon factorial (f n)
(M P n 0)
(gate p f 1)
(+ I p notp)
(factorial (gate notp f %) (+ (gate notp n %) % 1)))

This cannot work in the current implementation because in the process of creating an instance of
factorial another instance of factorial must be created, and so there is indefinite regress.
This is a standard problem with any macro-type language. It is analogous to it programming lan-
guage in which all procedure calls are replaced by the code for the called procedure (procedure
integration) before any part of the program is run. What is needed is a way to instantiate a macro
only partially, then compute using some of its parts, and then create the rest of its parts only
when necessary. One possible heuristic is never to instantiate a sub-macro unless at least one argu-
mcnt has propagated to the call to it (the assumption being that it won't generate values without
input-not always true when the assume construct is used!). This would allow the definition
of factorial given above to operate properly. If one said (factorial answer 3), then
one instance of factorial would be made, containing an equality test, a gate, an adder, and

.' - .



§ 8.4 Discussion of ihe Alacro language 343

so on, plus a dummy instance (a "procedure call") of factorial that has not yet actually been

created. The value 3 propagates from n. producing zero for p. and so f is not gated to 1, but
instead n is gated to the second adder to calculate 3 - 1 = 2. This is then visible on a pin

of the dummy instance, and so the recursive instance of factor i a 1 is created at this point to
replace the dummy instance (and this actual instance itself now contains another dunmy instance).

After two more steps there are four actual instances of factorial nested. with the innennost

containing yet another dummy instance. This last one is not actually created. however, because n is
zero and so the gates prevent any values from propagating to the pins of the dummy instance.

I have constructed a constraint system that operates in this manner, and it has successfidly

run recursive constraint networks such as the definition of factorial given above. It is not

of the same "lineage" as the systems presented here, however, but an offshoot of earlier, less trac-

table versions, and so I do not present the code here. Also, that version did not have retraction

capabilities: except for the ability to handle recursive constraints, it was approximately equivalent
to the system of Chapter Three. (I attempted to add retraction capabilities, but that interacts in

extremely complicated ways with dummy instances. I chose to abandon thiat path to concentrate on
the use of dependencies and on dealing with networks containing multiple contradictions.)

An obvious problem with the vecto r construct is the restriction that the size of the vector be

fixed. One would like to have the size specified by a true constraint variable. One could cve,, set

up a general gcd program that would use a vector of indefinite length: when the gcd computation
was done, the size of the vector would have been determined by the computations of the body

(trying to satisfy a boundary condition)! 'is would be very powerful. Implementing this is roughly
the same as implementing recursive constraints* one needs a way to avoid creating instances of

things until it is clear they they are really needed. In this case, no instances of a vector body would

be created until one was needed. (This is analogous to a wh i 1 e-do loop: rather than creating

all the copies of the loop body that will be needed at run time (unrolling the loop), before each

time the loop body is executed a run-time check is made to determine whether it needs to be.)
One difficulty that does arise with vectors is the situation where a vector 5 long is created, and

then the value 5 is retracted and 3 substituted: two copies of the body must go away, or at least

become ineffective (the latter course perhaps being more economical implenientationally if there is

a chance that the 3 may become a 5 again). This requires the ability to retract or suppress network

connections or constraints: this ability is not provided by the current constraint system.

ALI.



A song not for now you need not put slay ...

A tutie for the was can be 3ung for today ...
The notes ol the does-not will sound as the does ...
Today you can sing for the will-be that Hu&

-Walt Kelly (1953)
Ten Ever- Lovin" Blue-Eyed Years with Pogo

Chapter Nine

Compilation

T Ill" PURPOSE 0F COMlMI.ATION is to trade more work now for less work later, by expending

effort now to reduce an object to a form more easily dealt with later. In die case of our
constraint system, we seek to reduce a macro-constraint definition to the definition of a primitive
constraint.

I present here a simple compilation technique. While the idea is simple, the details are even

more tedious than usual, and so I shall not present the code for the compiler here. The compiler
is similar in flavor to the one described in [I1orning 19791, and also bears some resemblance to the
code-construction tecnhiques used in [Brown 19801.

'1he compiler takes a macro-constraint-type definition and creates an instance of it, in order to
have a network structure on which to operate. It then performs a propagation-like process on the
network.

Suppose the macro-constraint-type to have n pins. Then the compiler performs 2n passes, one
for each possible subset of the pins. (This exponential may seem horrendous, but I have compiled
macro-constraints with nine pins in only a short time-less than thirty seconds.) For each subset,

those pins are marked "given", and then pseudo-values are propagated throughout the network.
A marker is actually a list of pins, and each given pin is marked with a list of itself. A rule may
he used if markers are present on all its triggers, in which case the union of die marker sets is

used to mark the output pin (because all those values went into tie deduction of that value). If a
marker reaches a pin, and the marker is the set of all the given pins, then a rule may he consu-ucted
relating the output pin to tie input pins. This is done by tracing back through the "dependencies"

maintained during the pseudo-propagation, welding together the lisP code for the various rules

344

I'



345

used in the propagation process. (If a marker reaches a pin and is not the set of all given pins, no

rule is constructed, because that rule will be obtained on anothcr pass.) If two markers meet at a

node, then a detector rule may be constructed that signals a contradiction if the two values are not

equal.

Assumption cells (and &nogood rules in general) cause difficulties because their cells may

not be "compiled out" and converted to iISP variables. This is because the cell structure is needed

to record nogood sets. My solution to this (which I have not yet implemented--the current com-

piler simply doesn't handle &nogood rules) is to artificially move interior nodes supplied by

&nogood rules to the "houndary" of the constraint, making them pseudo-pins. Then they can
have regular cell structures, but t ie are not real pins in that they are not ordinary connection

points.

As an example of the results ot this compilation technique, consider our old standby, the

temperature converter (this definition is taken from §8.1.2):

(defcon temp-converter (f c)
((+ add) f ((, othermult) ((* mut) 9 c) 5 %) 32))

Ihe result ofrcompilation is the following primitive constraint definition:

(DEFPRIM TEMP-CONVERTER (F C)
(C (F)

(PROG FOO ()
(RETURN (LET ((A (. (- 32 F) 5))

(C 9))
(IF (AND (NOT (ZEROP A)) (ZEROP ( C A)))

( C A)
(RETURN-FROM FOO @DISMISS))))))

(F (C)
(PROG FOO ()

(RETURN (4 32
(LET ((A (, C 9))

(C 5))
(IF (AND (NOT (ZEROP A)) (ZEROP ( C A)))

(// C A)
(RETURN-FROM FOO @DISMISS))))))))

'here are two rules- one computes c from f and the other computes f from c. Notice that
where possible straightforward i,ISP computations are used, as in ( • (- 32 f ) 5) in the rule

for computing c from f. If a value is to be used more than once, then a let form is used to name

the value. The p rog forms arc necessary so that if a @d i sm is s or lose operation occurs, an

immediate exit (via return- f rom) can be taken. If any part ofa computation dismisses, then the

whole thing dismisses, if any part loses, the whole thing loses.



Alisier Middle in the meadow
Riddled 'round with rain.
Puzzle you the pitter-pat
What not goes tip again?
Riddle you the little dew
And little do you do?
Little did is little done. Chapter Ten
Tho" little did'l do

-Walt Kelly (1959)
The Poo Sundav Brunch

Conclusions

T Ill" RESFARC11 DISCUSSED IN TIllS DISSFRTATION has resulted in the construction of a con-

- straint language system of fair complexity. It certainly does not have all the characteristics
one could hope for; it is not even a combination of all the characteristics which have been
separately achieved by previous systems. It is, however, a fairly eflicicnt version that is perhaps

closer to being viable for a multiprocessing implementation than any other so far.

The system presented here performs computations on networks of relationships by local
propagation, using one-step local deductions. llie history of the computation is maintained in
the form of dependency information, indicating which values were derived from which others.
'his information can be used to explain the computation, in whole or by stages, and to guide the
automatic or semi-automatic handling of contradictions or changes to the network parameters. 'Tis
uses the technique of dependency-directed backtracking, which is shown to he superior to the usual
chronological backtracking in many cases. An assumption mechanism is provided to allow guesses
and default values, and a resolution mechanism plus recording of derived premises as nogood sets
allows derived constraints to limit the explosion of combinatorial search.

'he implementation of the system reflects the structure of the visual image of constraints as

connected devices which gives this paradigm its intuitive power. "This leads to some complexity
because of the use of data structures with pointers to each other. However, once a network is
constructed, propagation of values is very fast, and yet the structure of a network can be altered in
mid-computation without invalidating the semantics of the language.

A primitive abstraction capability (macros) is provided, and a simple compiler for these mac-

ros can reduce them to primitive operators.

346

L .--



§ 10.1 Comparisons with Other Work 347

10.1. Comparisons with Other Work

10.1.1, SKETCIIPAI) Relaxed Constraints on Geometric Diagrams

The SKE'CIIPAI) system [Sutherland 19631 was in many ways ahead of its time. It provided
graphic display output, a user interface not limited by the "Model 33 bottleneck", and automatic
satisfaction of constraints. A technique amounting to pre-compilation of local propagation paths

was used (undoubtedly similar to the methods of Chapter Nine), which Sutherland called "the
one-pass method". Where that filed, a relaxation method was used. with each constraint being
represented by a simple subroutine which would calculate an error value as a measure of how
"unhappy" that constraint was with the existing values. Explicit dependency information was
not used, relaxation solved global conflicts. This was possible because the geometric domain of
SKFTCIIPAI) is continuous, and all the constraints were equalities among linear relationships of
variables, so the arithmetic computations were well-behaved.

Macro-structures could be built within SKIHTCIIPAI) and instantiated. Such structures had
some of the properties of primitive objects, such as designated points of attachment. Moreover,
non-primitive objects could be identified (merged), in which case sub-parts would be recursively

merged. The operation of merging was apparently irreversible, however.

Given that constraints were used as early as 1962, why were not these ideas explored further,
rather than waiting ten to fifteen years? One might speculate that the ideas were tied to graphics,
as constraints seem to be most suited for describing objects; and furthermore that the advent of
timesharing suppressed the development of graphics for a long while (because smooth graphics
support tends to require steady computational service and therefore a dedicated processor). "liis
is pure speculation, of course; but witness the growth of graphics now that personal computers are
widespread!

10.1.2. Data Flow Computations Use Parallel )i,'ectional )evices

The data flow languages and architectures proposed by Dennis and his colleagues [Dennis
19731 IIDennis 19751 [Arvind 1978) are very closely related to constraint languages in that the
computation is organized as a network of processors operating in parallel on data which moves
asynchronously along wires between the devices. In the data flow paradigm, however, wires are
pre-assigned directions along which the data flows. The purpose of data flow is to express the
sort of directional computations ordinary programming languages handle, without the extraneous



348 CIIAP'rI:R 'I'I:N CONClUSIONS

sequencing conditions which they impose by their over-restrictPve control structures. 'Ille data flow
network itself expresses the necessary and sufficient sequencing for the computation. A device

computes a result as soon as its arguments are available.

Data flow networks do not record dependencies. As noted in Chapter Thice, however, de-
pendency intornation can consist largely of knowledge about in which direction data flowed along

each wire-and this is fixed in a data flow network anyway.

l)ennis has proposed specific architectures for executing data flow programs ef'ficiently.
[I)ennis 19751 A constraint architecture is of necessity more complex because of its lack of prior
commitment to the direction of data flo, along any given wire. In effect, a single constraint net-
work represents an entire c!ass of data flow programs, one for each partitioning of the network's
terminals into input and output terminals: the constraint system then, in effect, determines dynami-
cally which data flow computation to perform. Therefore it is likely that advances in the theory
of data flow languages may be used in the implementation of constraint systems. The language
VAI [Ackermann 19791, which is an algorithmic language in the style of algebraic languages but
permitting fle ,ble handling of sets of values (in particular allowing a function to return more than
one value without resorting to assignment of refecrence parameters) is of especial interest.

10.1.3. Waltz's Algorithm Filters Scene Labels by Local Propagation

A local propagation technique is used in [Waltz. 19721 (and described also in [Winston 19741
and [Winston 19771) to limit the combinatorial search for Huffman-style labellings of visual scenes
represented as line drawings. A line drawing itself forms a network structure: the goal is to assign
a labelling to each junction. 'lile Waltz filtering algorithm propagates information only along lines
between junctions, and computation is made at each junction only on the basis of information
flowing in along these lines. Waltz found that this technique. while performing only local propaga-

tion and therefore unable to resolve global ambiguities, would in practical cases usually converge to
an unique solution or one with very few alternatives to be resolved by global analysis. Moreover,
it lends to converge quickly, in time closer to linear than exponential in the size of the network.
Waltz also realized the possibilitics for parallel computation in this formulation. (A movie which
Wallz made, well-known in Al circles, shows graphically the information propagating from vertex
to vertex, with amhiguity factors at each vertex rapidly decreasing from the thousands to number
like I or 2.)

Waltz's representation has the advantage of simultaneously representing all valid states of the
system; it has the disadvantage of maintaining no dependency information. This can be a problem
if the network is ambiguous. For example, suppose that two vertices each have tw o possible label]-
ings. One might think this would indicate four possible sttes of the network, hut the labellings
might be correlated in such a way that choosing a label for one vertex forces tile choice for the

li1.



§ 10.1.4 Comparisons wiilI Oiher WIork 349

other. Waltz's system has no way to represent such correlations. (On the other hand, the propaga-

tion technique typically does reduce the number of cases to a number feasible to enumerate and
explicitly check in order to eliminate miscorrelated cases, which was all Waltz needed.)

10.1.4. Semantic Netisorks Propagate Symbolic Tags

There is a line of research stemming from Quillian's work on semantic nets which deals with

the propagation of symbolic tags, rather than computational quantities, within a network. 'ihe

distinction I draw here is rather fuzzy, but in propagating symlbolic tags it is the fact that two or
more lags collide somewhere that is of interest, wkhercas with computational quantities the arrival of

a single value at a node is of interest. That is, a Nalue carries ncaning of its own, while tags are not

very interesting in themselves, but bear meaning derived from the places they were first inserted

into the network.

Quillian's semantic nets [Quillian 19681 consisted of a set of nodes representing primitive con-

cepts with pointers among them. The meaning of a node consists precisely of de sum total of its

relationships to other nodes. Quillian's system could compare two concepts by propagating two

symbolic tags from the concepts and analyzing the points where they met.

Grossman used constraint expressions to represent complex data base relationships, including

but not linited to unions. intersections, arod partitionings of sets. jGrossman 1976 His system

used complicated, multiple-component tags. One problem with his system was that ever-increasing
amounts of information arc represented in the structure of individual tgs rather than in the net-
work, and the structure of a tag was not so easily amenable to analysis and propagation as the

network.

Fahliman, on the other hand, explicitly uses only atomic tags, and a small number of them
at that. 'rhe primary use of propagation in NFTL1 is to use highly parallel techniques to quickly
perform set intersection, which is one of the more dilficult data base operations. The ability to

propagate markers quickly in parallel enables the use, in effect, of templates and indirect pointers
to represent virtual copies of things, rather than making explicit copies; while it takes time to
follow indirect pointers (one reason I avoided them in die implementation of die macro mechanism

of Chapter Fight), the parallel techniques of ell allow many such pointers to be traced simul-

taneously.

10.1.5. Freuder's Method Propagates by Syntiesizing I ligher-Order Constraints

In (Frcuder 19761 a method is described for propagating constraints by synthesizing ncw ones.
The method is roughly as follows. Suppose that a network has n nodes. I et each constraint on

k nodes (k < n) be represented as an explicit set of k-tuples representing valid combinations

" No



350 CIlAPir .l*TN CONCILUSIONS

of values for those nodes. Then all possible subsets of these nodes are considered, in order of

cardinality. As k ranges from 2 through n, the constraints of order k (those which relate exactly k

nodes) are synthesized from those of order k - I. More precisely, the order-k constraint on a set

of nodes J is synthesi/ed by combining the k constraints of order k - I on subsets of J. Hence

this constitutes it sort of compilation process using a dynamic programming technique. When the

algorithm is finished. the single order-n constraint is a set of solutions for the entire network.

The running time of this algorithm is uncertain. On tie one hand, a network of n nodes will

require s nthesis of 2" constraints. On the other hand, as Freuder indicates but does not elucidate,

the entire set of constraints of order k will contwin redundant information if the original constraints

were all of smaller order, lie says, as an example, that in an order-4 network with originally only

binary constraints, only three ternary constraints need be s nthesizcd. Ile does not give a general

rule, however. lie also suggests some general heuristics about which constraints to synthesize first.

One may observe that Freuder's representation of a constraint amounts to a collection of

"good sets", combinations of permissible values. (lie explicitly assumes that each variable ranges

over a finite set of values. Note that the same assumption is true of the Waltz application: the

set of possible labellings for each node is large but finite.) In constrast, the system presented in

this dissertation initially assumes that all combinations are possible, and then uses nogood sets to

rule out invalid combinations. When the universe of discourse is finite, this does not make much

difference; but if it is infinite, then the choice of one representation or the other does matter.

Indeed. in my system some contortion is needed to represent tie fact that a node must take on one

of a finite number of values: such a fact is enforced by a constraint which, when an invalid value

ever appears, records that value in a nogood set. In effect, my system is biased towards infinite

"good sets", on the principle that until a node is constrained at all it may take on any value. Indeed,

Freuder uses, for efficiency, a special kind of constraint, which he calls the non-conslrainl, which

is in effect the set of all possibilities. lIe suggests also that the propagation procedure be able to

deal with complements of sets. It is worth investigating the characteristics of a constraint system

combining explicit nogood sets with explicit good sets.

10.1.6. PROI OG Uses Chronological Backtracking on Florn Clauses

The PROi O0 language allows the programmer to write statements of predicate calculus in

Horn clause form. A PROIOG statement is an implication whose antecedent is the conjunction of

predicates and whose consequent is a single predicate form. A typical PROI 00 statement is:

arrange(cons(X,L),tree(T1,X,T2))
partlton(L,X,Lt1,L2), arrange(L1,T1), arrange(L2,T2).

I The oneof mnchanism of (hapter Five constitutes an explicit rcpresentalton of "good sets", but in a manner not
well integrated with the representation or nogood sets.



§ 10.1.6 (omparisons iiih Oiher Work 351

(This is tiken from a program in [Warren 1977b] that converts between lists and binary trees.) Ibis

may be interpreted declaratively as the statement

VXVLVTiVT 2VLIVL 2 (p(L, X, Ll, L-) A a(L, TI) A a(1, 2, T2)) - a(c(X, L), t(T, X, T'2))

However, the PROI OG language also pro% ides an imperativC intcrpt'ition. The term before the

- is considered to be a procedure declaration, and the terms to the right are statements of the

proccdure. "'hus. the statement above may be read, "If you need to call procedure arrange, then

its first argument must be a cons and its second a tree, and also you must execute three other pro-

cedure calls". Moreover, there may be more than one "declaration" of a "procedure": when a pro-

cedure must be executed, its various declarations must be chosen among "'ntoi-deterministically".

(The non-determinism is implemented using chronological backtracking, as in MICRO-Pt ANNFR

I??1]. If a given declaration for a procedure doesn't work, tie next declaraltion fobr that procedure is

tried: if all declarations fail. then failure propagates back to the caller, which must then try a new

declaration for the preceding tern, or fail itself. See ISussman 1972] for a critique of the method of
chronological backtracking.)

The PROV OG language, like the constraint language, provides a secondary interl)retation for
its semantically declarative constructs which is used to limit and guide deductive mechanisms. As

we have seen in Chanters Five and Six, the non-chronological backtracking mechanism is poten-

tially more efficient than the chronological one used by PROI.OG. The PROIOG implementation

keeps dependency information internally (in a specialized form made possible by the nature of

its backtracking mechanism, which allows use of a stack), because after merging variables during

a "procedure call" it may later have to undo the merge on failure. However, this dependency

information is not available to the user. Conditionals are handled by a resolution pattern-matching

mechanism and explicit predicates, both of which succeed or fail. The PROI OG compiler manages

to compile these failure mechanisms out in simple cases, reducing the pattern-matching to simple

dispatches.

The best implementation of PROI 06 [Warren 1977a] uses data-structure techniques similar to

those of the constraint system described in this dissertation. When two variables arc identified, one

is chosen as the "repository" for the value, and the other is made to contain an indirect pointer

to the firsL (It is cleverly arranged that the "oldest" becomes the repository, so that a repository

cannot be destroyed during backtracking if there is any indirect pointer to it. '[his is one of the

tricks enabled by the use of chronological, stack-based backtracking. 2)

There are many good things about PROI 0G, and it deserves more popularity in this country.

If there were an implementation of PROIOG which had arrays, retained general user-accessible

dependency information, permitted assumptions, and forsook chronological backtracking, it might

2. For a discussion of the effect, of the stack implenientation technique on Ihc development of PROIOG. as well as
a gtod general discussion of the pros and cons of the language, see McDciniott 19801.

P ..



352 CllAlI: TI-N CONCLUSIONS

be close to the ideal constraint language I hawc in mind. Interesting variations or IROI 0G allow the
use of non-I hrn clauses [Ider 19761 and the specification of control information to influenCe the

backtracking order in a rather neat and intuiive way [Clark 198071.

10.1.7. '1 IIINGI .All Proiides A (lass I litrarchy and Uses Ilatinanes

[he IIIINGI All system [Horning 19791 is i constraint-based graphics system that is quite
similar in its capabilities to SKI 1(I1P1AI) IStutherland 19631. Its internal organization is different,
howeter, and indeed somehat more flexible. It is embedded within Ile SM. I IIAI K language

system (a successor to that described in [Goldberg 19761) in much the same way that my constraint

system is embedded \%ithin the ILisp Machine I.ISP system. The SMA I [AI K language is object-

oriented. all computation conceptually occurs by one object passing messages to another. Ihis is,

therelbre, already ver, similar it a constraint systen the primary (and \ery large!) difference being

that the computation is directional in nature. The I IIN(Jl Al system implements adirectional con-

straint computations, and takes advantage of the SMAI IlAI K class hierarchy, \hich allows objects

to inherit properties from other objects. Horning indicates that tie class hierarchy is more useful

than tie SKI. 'CIIPAD instance mechanism becatse SNIAI l.IAI.K instances can have individual state

variables to parameterize each instance.

The IIINGIAI1 system always compiles a network before beginning to satisfy it: this is done

for speed. Both propagation and relaxation techniques are used for constraint satisfaction. While

rIIINGLAI initially used only the error-comlutation nlinimization technique of SKI-TCIIPAD, in its

final form it also has local procedures (analogous to the rules of my system) for explicitly satisfying

constraints: these were introduced in order to deal with non-numeric constraints (which I think

might better characterized as "constraints on variables over a discrete domain").

No dependency information is retained by TIIINGI All. Rorning states that this causes more

work to be done than necessary when a parameter is changed.

Internally, while constraint networks are always compiled, parts are always accessed at run

time by following path names: direct connections are not used. Horning points out that this avoids

tie extensive use of back-pointers (complex pointer structures were used in SKIE IIPAI) and also

in the system described in this dissertation), at some time penalty for following the paths on every

access. Another advantage of symbolic pathnames is that the description of a constraint network

need not be copied e\ery time it is instantiated. 'Ihis copying is of course a problem with the

macro mechanism of Chapter Fight: every macro-constraint instance requires a complete copy of

the defining network. This is necessary because not only must the cells of the instance point to the

devices of the network, but the devices must point back to the cells. In Borning's system much less

copying is dme. On the other hand, a system which shares a single read-only description among

many instances is, I think, less amenable to a multiprocessing implementation.

i-



§ 10.1.8 (oMpartifom wi/h Other Work 353

III IN(Il provides a beautiful graphical user interface, and ways of manipulating constraints

either as pictures or as SM.\II IAI K programs. I lowever, it is not a true programming language, nor

was it intended to be: Borning labels it a "siniulation laboratory".

10.1.8. 1:1 and ARS Analyze Electrical Circuits by Iocal Propagation

The ii ISussman 19751 and !\IxS IStallman 19771 systems were the direct intellectual ancestors

of the research in this dissertation, and also inspired much of tile other work at M.I.T. to be

desoribcd in the next few sections. These werc programs for electric.lI circuit analysis (actually, ARS

was an Antecedent Reasoning System in terms of \hich later versions of 11 were implemented).

The various implementations of 1i all used local propagation (one-step local deductions) of cur-

rents and \oltages to analyze circuits. [his is of course a natural application for constraints, as the

constr:ont network corresponds directly to (he circuit diagram, and inspires a view of coistraints

as active de\ices. While Sussman and Stwilman are quick to point out that local propagation does

not work for many complex synergistic circuits, they also note that tile technique often produces a

solution much more quickly, directly, and intuitively than die usual technique of setting up node

or branch equations and then so] ing a large set of simultaneous linear equations. In effect, in this

application die local propagation technique automatically determines de best variable to eliminate

at each step fromt a set of equations for \hich the coelficient matrix is sparse.

I./,AIS also kept track of dependency information, using it both for providing explanations

for tile user and for the handling of contradictions by retracting only relevant premises. It wits for

this system that tie term dpendnc-direced backtracking was coined, as well as die notions of in

and out facts and nogood sets.

There has been continued work on tie application of constraints to circt-it analysis and syn-

thesis. [de Kleer 1978b1

10.1.9. Truth Maintenance Systems Are General )ependency Managers

t-romn ARS developed the notion that there could or should be a general piogranning system

or package which could deal with dependencies in a general way, much as a garbage collector

deals with heap storage in i general way. A series of implementations of a language called AMORI)

were produced at M.I.T. [l)oyle 19771 Ide Kleer 1978a] 'l11e ANIORI) ,stem provided an indexed

data base mechanism for recording symbolically represented facts, and a dependencies manager

called a truth mainetiance sjslcm ( TMS) for recording logical relationships among the (otherwise

- - .,t



354 CttIv I 1RTN CON'i USIONS

uninterpreted) facts.

Jon Donyle [1 )oyle l978aiI 1l)o le 1978b] (D~oyle 19791 and latter I ),iid MicAllestcr INcAllcstcr
19781 jN-cAllcster 19801 researched and implemnented methods of separating miore fully the Truth
Maintenance S~ stemi from the data base niachincry. Fach deals with utodcs, small I Isi, data struc-
turcs which represent abstract facts. [ach Cact may have a truth value iissociated wsith it. One of
the important result Of thiS As ork "s as reali/i ng (or redisco% cring) and inslitutionali/ ing the distinc-
tion betweenci know ing somiithiing not to lC true and not knowsing somnethin ig to bc true. Tbus a
distinction is drawn between at fact being mat (not hclies ed) and bcingfilse (believed tnt). D oyle's
TIMS implemcnttions allo~k facts to be either in or out, and deductions may he made kin the basis
of at fact's being in or oit. Negationi (Ctlseness of at fact) is handled by having two nodes, one for
a fact and one for its negation, and liniking thern with two rules stating that if one is known to be
in, then the other must be out. T[hus the two nodes have four states in all, of which one (b)oth in)
is forbidden. '[he other three states correspond to the flict beinig known true, known false, and
unknown.

Tlhe ability to niake deductions based on not knowing something leads toi a peculiar logic.
Donyle and Mcl~ermott haN e investigated the formal properties of such at logic. [Mclecrntt 19791
T'his structure allows one to express aSSLonptions, for example: one may have a rule stating that if
the negation of a fact is not known to be true, then the fact niay be deduced to be true.

McAllester's version oif a 'Truth Maintenance Systeni [McAllester 19781 handles the three
States true, fase, and unknown directly. It also handles assumptions (which MecAllester calls
defaults) in a special way (specially tagging certain nodes ats being automatically retractable), which
inspired the methods I have used in this dissertation. His system is a little more streamlined than
IDoyle's. and operates sonewhat differently internally. A stripped-down re-implemnentation of this
system has been used by Shrobe in the integrated-cir-cuit design system DA)AlI US [Sb robe 19801.

I originally set out to use a N-ersion, of McAllester's 'lMS in this research, and re-implementing
it taught me a great deal. (As it turned out, my re-implemnentation turned out to be surprisingly
similar to Shi )be's: we had both striven to excise the remaining vestiges of the 'VMS' being tied
to a particular data base format! I find this encouraging: it indicates that a "pure'' [MS package,
properly implemented, Will be useful in a number of a ppl icat ions.)

I decided, however, that it would be more useful not to have to store at value in at cell and
then mnake a data structure to represent the fact that the cell had the value. Rather than having

facts with states truefalse, and unknown, it seemed simpler just to let cells hai~e states consisting of

3. Onc of mny best failures was an aucmptfi to write a siiple LISP coinpilcr in an eartlvrso of AMORD. theC idea
was that once a prograin was comopiled an increiricntal change to tlic ptogain woid~ requtire nlittn increnmental
antount or recomipilation to prodlree ncw conmpiled code~ lbc use oif dependency-dirccied backtracking would ensure
that paris or the old compilation effort which (lid not depend on ahwred p~ices5 or the programn wotld be preserved.

Ibirst version or AMORDi had a data base orgaiied around triples. niuch like LEAP, in order to gain wsomc
imiagined speed fiomi a clever imsplementation techiniquc. (Otis was 11r% raul, I bclreic.) It %has the attempt to write
somnething as large ais a comnpiler in termis of triples that proved thie organi/ation to be eces .sively unwieldy, later
versions of AMORI) have had a richer data base structure.



§ 10.1.10 Comparisons vith Oilher Work 355

their natural domain (I chose integers) plus unknown. The resolution techniques McAllestcr uses

generalize in the manner I have shown: one need only think of the TMS as operating on a many-

valued logic, if one wishes. McAllestcr's TMS represents all constraints as clauses, sets of literals

not all of which may hold (or, at icast one of which must not hold, depending on which side of the

dceMorgan coin one looks); since this is the natural form for nogood sets, such sets are represented

in the same way as any othcr constraint, a nice feature.

l)oyle comments in [I)oyle 1979] that it is useful to have a way to explicitly represent the

situation %here both a fact and its negation are believed, and SO argues against the use of three-

valued Truth Maintenance Systems. To be sure (I)oyle argucs), this situation is contradictory and

so ideally is transient, but nonetheless may persist for some time and must be dealt with. My system

deals with this issue in that all flacts arc of the form "cell x has value n", and there is an explicit way

to represent the situation where equalities arc violated. Ifone takes a cell and its \alue to mean rep-

resent the "fact" that the node (in my sense, not the TMS sense of the data structure repNrescntating

a fact) of the cell has that value, then the various cells of a node can represent possible Iflcts about

that node. It remains to be seen whether this structure can persist when equalities (connections)

themselves are also considered to be questionable and retractable facts.

McAllester uses his TMS in [McAllester 19801, in which he views deducing facts as a process

of deriving better names for an object than you started out with. I have found his ideas tangentially

useful in trying to choose good names for objects when producing explanations (cf. the function

cell -goodnanie in my constraint system).

10.1.10. A Simple Constraint Language Was Designed ""ivo Years Before This

In [Steele 19791 Sussman and I described a constraint language system which was the direct

precursor of the present work. llie language allowed creation and connection of devices, and

provided a macro abstraction facility for defining devices in terms of complex networks. It per-

formed local propagation of values, maintained dependencies, and provided for retraction in case

of contradictions. It did not have an assumption facility and the corresponding nogood machinery,

and had no provision for dealing with parts of the network as algebraic expressions, though the

paper contains some discussion of the possibilities.

The system in [Steele 1979J did have one interesting and usefiml feature that the system

presented here does not (though it would not be that difficult to add): equatings could be stated not

only between two cells, but between two constraints of like type. Such an equating implied recur-

sive equating all the corresponding parts (sub-devices, pins, and other variables) of the constraint.

Tlhis of course is similar in intent to the merging facility of SKITCIIPADI) and TIIINGIAII. However,

those two systems did not maintain dependency information. When dependencies are maintained,

some record of the merging must be kept to enter into explanations. In the system of [Steele 19791,



356 CilAP It-R TEN CONCLUSIONS

this was done by letting the merged objects remain distinct and passing values back and forth over

an explicit equality link. A more efficient technique would be to merge the two objects into a single
one, with a notation as to how to undo the process (this is done in TIIINGI AB). [letter yet, some

analogous thing might be found to do for constraint objects what I have done here for cells, letting
them share a central "repository" structure while maintaining other individual components.

10.1.11. Other Work Using Constraints

There are several lines of research into the applications of constraints. None of these, I believe,
is aimed directly at the construction of a general-purpose constraint language, but the ideas in
them are interesting and result from the pressures of a real application of the concept. While the

work I have presented in this dissertation does not draw directly from all of these, yet it has been
influenced by the existence of each one. through conversations I have had with the authors or

papers they have written.

Ken Forbus has used constraints to perform qualitative analyses of situations experiments in

classical mechanics. ie has implemented in MACI ISP al efficient and extended version of the
constraint language used in (Steele 19791, which was written in Sch' (.']Steele 1978a].

L. Peter )eutsch, while visiting M.I.T. for half a year, worked on the theory of constraints and

had many conversations with me. His primary goal (as I understand it) was to write a constraint

system suitable for supporting a text processor, which must have constraints on margins, paragraph

sizCs, and so on.

Howard Shrobe has used constraints in an integrated-circuit design program [Shrobe 19801,

and applied dependency analysis to the understanding of computer programs [Shrobe 19791.

Luc Steels has been experimenting with constraint propagation within an actors/frame or-

ganization. (Steels 19791 [Steels 19801 Rather than using a centralized general Truth Maintenance
System, he lets each constraint have its own arbitrary rules for restoring consistency. He "treats
a constraint as a propositional object", hut by this he does not mean what I do when I say that

I would like a constraint to be an object of tile language. In his language, treating the constraint
as an object means that its value (a truth value) indicates whether or not the constraint is in force

or not. (This is similar to my suggestion in §6.3.27 that every primitive constraint have two extra

pins. one as a conditional control and the other as a biconditional control on whether or not the

constraint is in force.) What I mean by letting a constraint be an object is that it can be a value,

rather than having a Value, to which constraints can be applied. Of course, adde r' and maxe r
constraints would not make sense applied to a constraint, but an apply operator or a mapcar

sort of operator would make sense.

Richard Brown has written an impressive system [Brown 19801 which synthesizes numerical

programs by constructing a network of constraints, propagating numerical and symbolic informa-



§ 10.2 Preseni and Fulure Work 357

tion within it, and then extracting an algebraic description of relcvant portions of the network in
the form of an executable l.ISP program. Brown's terminology is not at all the same as mine, what

I call a macro-device he calls a complex device, the term macro-dcvice having a slightly different

meaning for him: it is a complex device whose definition is a subnetwork which the system extracts

from a given network in order to explain the relationship between a given set of nodes. Brown

notes that a complex device is created for every macro-device extracted.

I observe that rown's macro-devices are generally used in situations where some functional

reltionship must be foiund between two (or more) nodes so that some other part of the network

can act as an operator on the function which expresses the relationship: that is. as a constraint on
a constraint. I would find it more natural to let constraints be objects of the language, and express

his bisection-search other strategies as constraints which take other constraints as arguments. To use
a mathematical analogy. Brown's system (metaphorically) takes derivatives by accepting a notation

such as df(r)/dx. looks al the two places after the d's, and figures out the finctional relationship

between them, and then takes the derivative of that function. By contrast, I would prefer simply

to write df and be done with it. To use a programming-language analogy, Brown's system uses
Jensen's device, while I would prefer to use functional arguments. A fair amount of Brown's system

is devoted to the heuristic extraction of macro-devices; this is necessarily heuristic. It amounts to
a separation of level from meta-level after they have been mixed. I would view bisection-search as

a "special form" rather than a "simple constraint". (See ISteele 1978a] and [Steele 1978bl, on the

semantics of .1SP and SCII.Mt:, from which I draw my analogies.)

10.2. Present and Future Work

10.2.1. ''ahles Can lie Done "The Obvious Way" or by "Algebra"

By a "table" I mean a data structure which has individual parts into which another object can

be stored; this includes arrays, record structures, cons cells, character strings (i.e., those which can
be modified), and so on. I use the word "table" to avoid meaning any one of these specifically. 'lhc

interesting characteristic of a table is that given a table a and a selector k (a number, say), one can

access a variable ak which the table associates with that selector. It is important that die selector can
be variable, i.e., computed.

One approach to implementing these involves using the obvious sort of internal data structure,

say an array or a-list, pairing selector values with associated values. One quickly concludes that
what must be associated with a selector is a cell, for a table can be partially specified, with some

components having known values and others not. 'This structure complicates the propagation



358 CI lAPIlR TIN CONCI USIONS

process. Suppose that a constraint (part x a s) is provided which enforces the relationship
that the s'th component of the table a contains the value (i.e., is equated to) x. Then if s becomes
known, cells containing the table must be awakened, because they may be connected to other
part constraints which might be interested in the new value. This is slightly strange internally

if one isn't thinking carefully: in some sense the table has not changed-it is still the same data
structure-but it has become "more known" than it was before. Thcre is a spectrum of known-ness.
rather than a dichotomy of known versus unknown.

There is also a problem when two tables "collide". Consider the following sequence of state-
ments:

(part 43 a 1)
(part 69 b 2)
(= a b)

When the first part constraint is created, presumably (at lcasL I would do it this way) the variable

a gets as its value a table whose part named I is 43. Similarly b has as value a table whose part 2
has the value 69. When a and b are equated, we should expect the two internal table structure to
be logically merged, so that a and b both have as value the self-same table which has two defined
parts named I and 2. This is implencntationally difficult to do correctly, expecially so that it may
be undone. (This is a problem of merging structures which may not have like parts. fly the way, this
is why my system has always had a function called merge-values: the intention was that this
routine would be responsible for merging tables.)

Notice that the representation of a constraint in my system is actually very much like a table.
A constraint has named parts. One experimental constraint system I have implemented deals
with a problem of the systems presented in this dissertation, which is that it is not truly order-
independent with respect to user input, because create statements for a device must precede any
references to parts of that device. This would seem reasonable; but then again, why should one

not be able to refer to the a pin of a device not yet specified. expecting to plug it in later? This

is an essential prerequisite to the ability to have the analogue of functional arguments: constraints
that operate on other constraints. The experimental system I refer to allowed one to make such
"forward references". If one referred to (the b f oo) and f'oo was not yet defined to be a
device, then it was defined to be a b-device, that is, a device whose only property is that it
has a b pin: such a device has no rules. If one then later referred to (the a foo) then foo
would also be defined to be an a-device, which definition would then be merged with the
b-device definition to produce a definition of foo as an a-b-device. When eventual~y one
.said (create foo adder), the adder definition would be merged with the other, and pins of
like name identified. This was all very complicated and I was unable to combine it with retraction
in a straightforward way.

. .. .. . ... ...... . .... . " .. . .. .... i - " ' " " - .. - - I I I I l I



§ 10.2.2 Present and Fuure Work 359

The other way to deal with tables is by "algebra". Rather than having any special value which
represents a table in a cell, we let the structure of the network represent tie table. 'Ibus, if several

part constraints all have their a pins connected together, than they collectively constitute the
relevant structure of the table, for they relate selectors to components. All that is needed is a rule of
algebra that states that if (part x a s) and (part y a v) and s isequal to v then install
an equating between x and y. Such an equating must be retractable, of course, in case s or v is
retracted! It also requires the ability to alter the network on the basis of the computation (which is
what I mean when I say "algebra"). 4

While the algebraic method may seem more appealing, the arithmetic (or explicit data struc-

ture) method has the advantage of consolidating, in the explicit table data structure, those connec-
tions which are of interest to the table identities, distinguishing them from other equatings to table
components.

10.2.2. RecursiveC Constraint l)eflinitions Require Conditional Expansion

As discussed in §8.4, the present macro mechanism does not allow the definition of recursive

macros, because a macro is fully expanded when it is instantiated. Much better would be a
mechanism analogous to a procedure call, where a macro-constraint is not instantiated until it is
"called" (i.e., until at least one of its pins is known, or perhaps one of a set of combinations of pins
specified in or derived from its definition). Gerald Sussman has also suggested that one might want
to have a more explicit handle on the problem by having a special form, say

(when var body)

meaning that tie network described by body ought not be constructed until such time as var takes
on the value true. This is not required to be retractable, however; if var becomes false, the con-
structed network remains. This seems to me a rather brute-force approach, but it does work (I have
tried it in one experimental system).

10.2.3. Explanations Should Take Advantage of the Macro-Call Ilierarchy

In §8.3 1 briefly mentioned the possibility of producing summary explanations by glossing
over the details of the contents of a macro-device. It is essential that explanations of large computa-
tions be abbreviated to be comprehensible. It is both convenient and natural to use the hierarchy of
the macro-call hierarchy to guide the summarization process.

4. 1 think that there is perhaps a plateau up to which I have had trouble scaling the cliff. If any one of tables,
algebra, or meta-constraints could be handled properly in combination with dependencies and retraction, then the
others would come through easily. But it is a difficult feat to get any one of these.

.... . - .. . . . . .. . . . ..... . . . . . . . : .. . . :- ,.,' a. 't : .: .,.,4 _ L_--_p, ,-, ,



360 CI IAPTF.R TEN CONCi LUSIONS

D)yle [Doyle 1978a1 [Doyle 19791 notes that summaries can be logically represented in the
form of conditional proofs, from which, once they are constructed, summary explanations are easily

produced. However, it is not always clear when it is useful to construct such a conditional proof.

In the context of the macro-call hierarchy, however, it is natural to summarize the definition of die

macro-device as a single fact, so that one can say that the computed results depend on the input

values plus this single fact, which in turn is supported by the conjunction of a large number of facts

(the definitions and connections which define the macro-device).

'The current constraint system does not really represent the fact that a value is used by or

produced by a macro-constraint; the macro-call hierarchy in effect merely provides additional
names for a node in the form of pins and variables of tie macro-constraint. Such pins do
show up in the dependency structure of the comptfation, in the list of connections provided by

why-ul timately. What is needed is a mechanism to recogni.e this fact and omit details of the
"'insides" of a macro-constraint.

102.4. A Constraint Langumage Should he Meta-Circular

I have held as a goal toward the start, that I admit I have not even closely approached but
insist has been a Valuable guide in definition and implementation, that a general-purpose constraint
language should be powerful enough to express an interpreter for itself. (This is the analogy to a
law which I have often stated in bull sessions, and believe to be original with (though probably not

unique to) me: A general-purpose programming language isn't, if it can't conveniently implement
itself. An example of one which isn't is RASIC.)

First, there need to be appropriate primitive constraints. This causes the constraint language to

be a meta-language for itself. For example, one might need

(pin p c n)

which causes p to be equated to the pin named n of the constraint c (compare this with the

part constraint suggested in § 10.2.1). One might also want

(call C x y z ...)

to mean that if the value of the variable c is a constraint bar of type foo, then it is as if one had

written

((foo bar) x y z ...)

(This is analogous to the MACI.ISP function funcal 1. [Moon 19741)

Once the language is sufficiently powerful, then it can he used to express its own interpreter
(possibly using certain features to express themselves, as when in a I ISI, interpreter written in [ISP

one writes something like

-,



§ 10.2.5 Present and Future Work 361

(cond ((eq fun-name 'cons) (cons (car arguments) (cadr arguments)))
((eq fun-name 'car) (car (car arguments)))

in the definition of the apply function-it is this property that Reynolds calls inela-circulariy.
[Reynolds 19721)

10.2.5. Algebra Is Operating on the Network Structure

While local propagation can take one very fiar, there are many situations it cannot handle. I
believe that the solution is to supplement local propagation with a very limited way of augmenting
the network structure under computational control to instantiate algebraic identities. 'Ihese cor-
respond to several ways of viewing die same relationship, where the various points of blew are ex-
pressed as networks with differing structure (and so they express interesting semantic relationships
betwen the different networks). 'Ihis is to be distinguished from the ability of the current system
to take several points of view concerning the same network structure; this is a more syntactic kind
of algebra that can be performed without reference to the semantics of the constraints, but only
using the topology of their connections. Ways of introducing multiple points of view arc discussed
in [Sussman 19771 and (Steele 19791. Richard Brown's system 111rown l9o in fact implements such
algebraic augmentation of the network. One can imagine facilities for pattern-directed invocation
of algebra riles that would trigger on specified network configurations when new connections were
made.

10.2.6. The Systen May Need Control Advice fron the User

Reality being what it is, sometimes the system's automatic control structures will thrash wildly
without some advice from the user on in what order to perform computations. The priority queue

structure of Chapter Six, for example, provides some automatic control heuristics, but the user may
need to fine-tune these.

An approach I find intriguing might be borrowed from the IC-PROiOG system. [Clark 1980.1
'I'his version of PROI.OG allows one to annotate the argument forms to "procedure calls" to indicate

that a particular argument is a "lazy producer" of values or an "eager consumer" of them. To
translate this concept to the constraint system: a pin of a constraint-type could be labelled by a ?
(this pin is an cagcr consumer) or a I (this pin is a lazy producer). Then rules with triggers labelled
? would have very high priority when such a trigger received a value; and rules with output pins
labelled I would have lowered priority. Moreover, if another constraint's rule has an output pin
connected to an eager consumer cell, then that rile has high priority (and this overrides any I

-7-



362 CHAPTR "TEN CONCLUSIONS

annotation of that output pin). Using this annotation scheme one can express co-routines and such
using recursively defined constraints.

Another way to control the order of computation is to let every constraint have an extra con-
ditional control pin, as suggested in §6.3.27. "'hen a network of mecta-constraints could selectively
enable and disable constraints via this pin: a disabled constraint would not propagate, and enabling
would allow rules to be awakened. This technique in particular might be of use in combination
with algebraic techniques. Very often, in a redundantly specified netwoik, one can determine that

several subnetworks are duplicating each other's efforts. 'Ibis could be dctected by pattern-directed
methods, and an algebra rule triggered that would disable the redundant versions of the network,
or perhaps just give them low priority.

10.2.7. Techniques Are Needed ror Run-time Storage Reclamation

One property of the recording of dependency information is that the entire history of the
computation is maintained. 'lis is an advantage, but it also poses a problem, in that it takes
memory to hold the history. In a practical constraint system there will need to be ways to reclaim
data structures which arc unused or likely not to be used. The best candidates for reclamation are
those structures which can be recomputed if necessary.

In a constraint system with an abstraction hierarchy, one could reclaim the dependency struc-
tures, and even the networks, for the bodies of macro-constraints, leaving behind the results that
had been computed from the inputs. (If later the dependency structures are traced, the syustem can
report: "1 computed it using this macro-constraint, whose instance here I garbage-collected, but I
assure you that it was a valid compLtation-and if you like I will reconstruct the proof.") If one is
interested in reclaiming devices, a good choice might be devices whose pins all have values, for in
some sense they have done all the work they can. (The appearance and disappearance of devices
is analogous to the appearance and disappearance of incarnations of a procedure; the incarnation

appears (perhaps in the guise of a frame on the run-time stack) when the procedure is needed, may
survive for a while in a co-routining context, and then disappears when it is done.)

Another possibility is reclamation of nogood sets. lere are at least two cases of interest. One

is that resolution may produce a new nogood set that supersedes an old nogood set for some node,
in that the set of pairs in the new nogood set is a proper subset of that of the old nogood set. In this
case the old one can be reclaimed. Doing this AI[iciently would require a more complex indexing
structure foir nogood sets than I have used here, but would probably be worth a great deal. It would
certainly decrease the time spent checking nogood sets when solving something like the N queens
problem as in §6.4.

Ibe other possibility for reclaiming nogood sets is necessarily heuristic. One would simply

throw away nogood sets containing values which are (for some reason) considered to be unlikely



§ 10.3 Contributions of This Research 363

to recur. Such nogoxd sets can always be recomputed if necessary. Perhaps with each nogood set

might be recorded some measure of the effort that was necessary to compute it, and cheap ones

might be discarded before expensive ones. Care is needed, of course, to prevent thrashing caused

by constantly reclaiming and recreating a nogood seL

10.3. Contributions of This Research

These are what I believe to be the new and original contributions of the research reported by

this dissertation:

" I attempted to design a complete, general-purpose programming system organized around con-

straints. While this goal has not yet been met, yet I have made some progress toward it.

" 'lhe structure of the implementation matches the imagery of the paradigm. Data structures

which are thought of as being directly connected (as for example in a diagram of a network)

actually are connected.

(If this point seems trivial, consider two implementations of LISP, one using the usual pointer

representation, and one operating on S-expressions represented in "external form", as character

strings. An implementation of the latter form may seem manifestly laughable, but consider: (1)
McCarthy mentioned the possibility of such an implementation inone of the first early papers

on LISP. [McCarthy 1960] (2) Church's lambda calculus [Church 1941], an intellectual precur-
sor to lisp, was defined in Zerms of manipulations on strings, not trees, of symbols. "lbe tree

representation had to await computer imnplementation. (3) Certain program editors for lisP,

notably the cousins EMACS [Stallman 19801 (the editor usually used by the MACI.ISP community

[Moon 19741) and zwuI (the editor for l.isp Machine LISP [Weinreb 19791), represent those

programs as character strings and yet manipulate S-expressions, as if performing car, cdr,

and consoperations, by manipulating these strings. For some purposes, such as pretty-printing,

the character string representation is actually more convenient than the pointer representation.

(Indeed, that is why we write LISP programs as character strings rather than box-and-arrow

diagramsl) 'lherefore the string representation is not obviously impractical for all purposes. On

the other hand, the pointer representation is certainly much more economical for most purposes,

and this follows our intuitions about explicitly representing interesting relationships (such as car

and cdr) directly. The points are that (a) alternative representations need to be explored, and (b)

a representation which conforms to a pictorial image may seem more cumbersome at first but

may be more efficient because interesting relationships arc represented directly.)

e The structure of the implementation is closer to being suitable for implementation on multiple

processors than any other constraint system. (TIle organi/zation of 11IINGIAll [l1orning] might on

the surface appear to be equally suitable, but the internal use of pathnames rather than direct



II

I"

364 CIIAPTIR TF.N CONCILUSIONS

pointers causes problems.) Considerable effort has been made to make small the quanta of
necessarily indi% isible computation.

* 'flic research was conducted with the principles of orler-tindependence, IocalitY, and mnoiilonicily
always explicitly in mind. These principles are essential to the design of a constraint system.

Order-independence prevents the system from relying on the form of the input, its comptuta-
tions should be derived from the content only. I ocality and monotonicity are important to the
conccptual simplicity and comprchensibility of the system.

This system deals explicitly with the problem of behaving properly in the presence of contradic-
tions. Just as D)oyle and McAllester had to make the distinction between tie truth of a fact
and the belief in a fact, so I have noted the distinction between the (consislenc., of a system and
the vell-foundhedess of the system. Every computation, every deduction made by the system
presented here is wClI-founded: cach result is validly deduced from given premises. If the

premises are inconsistent, then the conclusions may be contradictory, but they will nevertheless
have correct justifications.

It is important for a constraint system to be tolerant of contradictions; if a problem arises in
a large system of relationships, the user may not want to deal with the problem immediately.
He may want to investigate the problem, or work on distantly related parts of the network that
may bc affected by the contradiction only slightly or not at all. Another case, common when

revising designs for ciginecred artifacts, is that the user 14ants to change several parameters at
once: changing any one would produce a hopeless snarl of contradictions, but if the user can
only tell the system, "Wait," then he can make the other changes to make the system consistent
again.

Previous '[ruth Maintenance Systems have been relatively intolerant of contradictions, insisting

that each one be resolved immediately. 'llhc system I have presented is tolerant. 'lie state
of a network containing contradictions is well-defined, because it is well-founded, and the com-
putation and explanation mechanisms can still behave reasonably and intuitively. Heuristics
(lowered priority for computing consequences of values known to be in conflict) prevent the
wasting ofcomputational effort on deductions likely to be retracted soon.

To God alone be the glory. Amen.

-* -- -~ -



The Patti' ofv the first Part
And the prt' of tile next

In a parskiecovered text.

We re you pio tial to a Part)'
That has parceled owt its parts
itth the Part)' that was second

lin ivir poll-tickle heart? References
The parlaY all your lositigs
O.n at hoew tha fls rnnming dlark-
HIMh lght.s-out y'ou miay triple
it a Iwiner in the park.

-W~ih Kclly (1952)
It Go Pogo

[Ackermani 19791
Ackcrntann, William B., and Dennis. Jack B. VAL: A l,"htle-Orieniel Algoritiunic language
(Prelitinaty, Reference 3lanual)j MIT/I .CS/'I R-2 18. M.I. . L aboratory for Computer
Science (Cambridge, Junc 1979).

lArfind 19781
Arvind*, Gostelow, Kim P.; and Plouffec, Wit. An AIsynchlronous P'rogramnming Language
and Computing Mlacihine. IDepartment of Information and Computer Science, Univecrsity of
California (Irv ine, D ecember 1978).

Illobrov 19801
Ilobrow, D~aniel G.. and1 Winograd, Tecrry. Response to Knowledge Representation
Qicstionnamirc. A( Al S/GA iRi*News,.lett~r 70 (Fcbrutar-y 1980), 85.

Illorning 19791
lokrning, Alan. TH INGI All: A Consiraint-1'riented Simnlion Laboratory. SSI :79-3. Xerox

IPalo Alto Research Center (Palo Alto. Califoirnia, July 1979).

1romin 19801
Drown, Richard HeInry. Cohewrent 11lutvtor from lIncoherent K'nowledge Sources in the

.'uuiatic S)'tllicesi o umterical flanputer Programs. 110l). IDisscrtaion. M.l.I'. (Cambridge,
June 1980).

[Church 19411
Church, Alonzo. The (Calculi oIf lambda C'onversion. An nas of' Mathematics Studies Numiber
6. Princeton University Press (IPrincelon, 1941). Rep~rinted by Klaus Reprint Corp. (New
York, 1965).

365



366 References

IChirk 1980?]
Clark, K.L. and McCabe,. kG. The Control hI-cilifies of ic-iPRoiOG la epartment of

Computing and Control, Imperial College (L ondon, undated, circa 1980?).
jdc Nicer 1978a)

dc Klccr. Johan; Doyle, Jon; Rich, Charlcs; Stcele, Guy L. Jr.: and Sussnman, Gerald

Jay. AMORD: A lDedu~ctive Procedure System. Al Memo 435. M.I.T. Artificial Intelligence
Laboratory (Camnbridge, January 1978).V

dc Klcer. Johan, and Sussman, Gerald Jay. Propagation of('onstraints Applied to Circuit
Syntlhesis. Al Memro 485. M.U.'. Artificial lIntelligence Latboratory (Cambridge, September
1978). Also in Circuit Theory, and Applications 8 (1980), 127-144.

[Dlennis 19731
D~ennis, J.11. Eirst Version of a Data I'Iow Proceidure Iaguage. Computation Structures
Group Memo 93. M.I.T. L~aboratory for Computer Science (Cambridge, November 1973).
Revised as M.I.Tl. Project MACTlM-61 (May 1975).

[Dennis 19751
Dennis, J.l3., and Misunas, D.P. "A Preliminary Architecture for a Basic 1)ata-Flow
Processor." Proc. Second Annual.Symposum on Computer Architecture (January 1975), 126-
132.

[Doyle 19771
Doyle, Jon, de Kicer, Johan, Sussman, Gerald Jay, and Steele, Guy L Jr. "AMORI: Fxplicit
Control of Reasoning." Proc. A I and Programming Languages Conference (Rochester. New
York, August 1977). ACM SIGPI.AN Notices 12, 8, A CA SIGiART Newsletter 64 (August
1977), 116-125.

[D~oyle 1978a]
Doyle, Jon. Truth AMaintenance Syjstens for Problem Solving. S.M. IDissertation, M.I..
(Cambridge. May 1977). A-R-419. M..l. Artificial Intelligence Laboratory (Cambridge,
January 1978).

[Dloyle 1978b]
Doyle, ]on. A Glimpse of Truth Alaintenance. Al Memo 461a. M.I.T. Artificial Intelligence
Laboratory (Cambridge, November 1978).

(Doyle 19791
Doyle, Jon. A Truth Alaimienance System. Al Memo 521. M.l.l'. Artificial Intelligence
Laboratory (Cambridge. June 1978). Also in Artiicial Intelligence 12 (1979), 231-272.

jFder 19761
Edcr, Gott fried. A PROJ OG -like Interpreter for Non-Horn Clauses. l.A.l. Research Report



References 367

26. )cpartment of Artificial Intclligcnce. Univcrsity of Edinburgh (Edinburgh, Scptcmber

1976).
[Fahhinan 19771

Fahiman, Scott E. NF'II.: A System for Representing and Using Real-world Knowledge-

Ph.D. I)issertation. M.I.T. (Cambridge. September 1977). Also published by M.I.T. Press

(Cambridge, 1979).

[Faternan 19731

Fatmanm, Richard J. "Reply to an Editorial." A(AI SIGSAAI Bulletin 25 (March 1973), 9-

11.

[Floyd 19791

Floyd, Robert W. "The Paradigms of Programming." 1978 ACM Turing Award Lecture.

Conn. tCMA 22, 8 (August 1979). 455-460.

[Freuder 19761

Freuder, Eugene C. Synthesizing Constraint h'xpressiois. Al Memo 370. M.H'. Artificial

Intelligence Laboratory (Cambridge, July 1976).

IGoldberg 19761

Goldberg, Adele, and Kay, Alan. SMAUITALK-72 Insini cion Manual. L.earning Research
Group, Xerox Palo Alto Research Center (March 1976).

IGries 19771

Gries, David. "An Exercise in Proving Parallel Programs Correct." Comm. ACM 20, 12

(December 1977), 921-930.

[Grossman 19761

Grossman, Richard W. Some Data Base Applications of Constraint I:'pressions. S.M.
Dissertation. M..'. (Cambridge, January 1976). Also TR-158. M.I.T. Laboratory for

Computer Science (Cambridge, February 1976).

IKnuth 19731

Knuth, )onald E. The Art of Computer Programming, Volume 3: Sorting anid Searching.

Addison-Wesley (Reading, Massachusetts, 1973).

[Kowalski 19741

Kowalski, Robert. "Predicate Logic as Programming L.anguage." Information Processing 74.

North-Holland (1974).

[Kowalski 19791

Kowalski, Robei "Algorithm L Logic + Control." ('omm. ACA 22, 7 (July 1979), 424-

436.



368 References

[Kowalski 19801

Kowalski, Robert. Response to Knowledge Reprcsentation Questionnaire. ACH SIGART

Newsletter 70 (February 1980), 44.

IMcAllester 19781

McA!Iestcr, David A. A Three Valued Tnlh Afainienae Sysiem. Al Memo 473. M.I.T.

Artificial Intelligence Laboratory (Cambridge, May 1978).

NIcAllster 19801

McAllester. David A. The Use of h'qualii' in Deduction and Knowledge Representation.

S.M. I)issertat:-n. M.I.T. AI-TR-550. M.I.T. Artificial Intelligence Laboratory (Cambridge,

January 1980).
Ic('artlny 19601

McCarthy, John. "Recursixe Functions of Symbolic F-xpressions and Their Computation by

Machine - I."" Conim. ACM 3. 4 (April 1960), 184-195.

INcl)ermolt 19791

Mcl)crrnott. Drew V., and )oyle, Jon. Non-Aonolonic Logic - I. Al Memo 468b. M.I.T.

Artificial Intelligencc ILaboratory (Cambridge, August 1978, revised July 1979). Also in
ArtUicial Intelligence 13 (1980), 41-72.

INlclrenott 19801

McI)crmott, Drew. "The PROLOG Phenomenon.- ACi SIGART Newsleuer72 (July 1980),

16-20.

INloon 19741

Moon, I)avid A. acllSl' Reference Alanual(Revision 0). Project MAC, M.I.T. (Cambridge,
April 1974).

lOwicki 19751

Owicki, Susan Speer. .Ixiomnalic Proof Techniques for Parallel Irograms. Ph.D. I)issertation.

TR 75-251. I)epartincnt of Computer Science, Cornell Univer:.-ty (Ithaca, New York, July

1975).

IPratt 19771

Pratt, Vaughan R. - lhe Competcnce/lc'formancc Dichotomy in Programming." Proc.

Fourth ACA! Sywiposiuin on P'rinciples of Programming languages (/OI'I) (I.os Angeles,

January 1977), 194-200.

jQuillian 19681

Quillian, M. Ross. "Scmantic Memory." In Minsky, Marvin (ed.), Semantic nfonation

l'roessing. M.I.'l. Press (Cambridge, 1968).



References 369

[Reynolds 19721

Reynolds, John C. "Definitional Interpreters for Higher Order Programming Languages."
Proc. ACAI National Conference (Boston, 1972), 717-740.

IShrobe 19791

Shrobe. Howard Filiot. Dependency Direced Reasoniig for (Conlilex Program Udersaiading.
Ph.I). Dissertation, MI.T. AI-TR-503. MI.T. Artificial Intelligence Laboratory (April 1979).

[Shrobe 19801

Shrobe, I loward. "Constraint Propagation in 'I.SI l)esign: I),AH)AIU.S and Beyond."
Abstracts friom Spring 1980 M.I.T. VILSI Research ReNiw. (Cambridge, May 1980).

|Sloiam 19801

Sloman, Aaron. Response to Knowledge Rcpresentation Questionnaire. 1I(AI SIGART
Newsletler 70 (February 1980), 86.

[Stallnmn 19771

Stallman, Richard M., and Sussman, Gerald Jay. Forward Reasoning and Dependency-
Directed Backtracking in a System fo r Computer-Aided Circuit Analysis. Al Memo 380.
M.I.T. Artificial Intelligence Laboratory (Cambridge, September 1976). Also in Artificial
Intelligence 9 (1977), 135-196.

[Stalman 19801
Stallmnan. Richard M. I!MACS Alanual for Jrs Users A] Memo 554. M.I.T. Artificial
Intelligence I.aboratory (Cambridge, June 1980).

[Steele 19771

Steele, Guy Lewis Jr. "Fast Arithmetic in Macl.ISP." Proceedings of the 1977 MASYMA

Users' Conference. NASA Sci. and Tech. Info. Office (Washington, ).C., July 1977), 215-
224.

[Steele 1978a1

Steele. Guy l.ewis Jr., and Sussman. Gerald Jay. The Revised Report on SCIIIM: A Dialect of
LISI,. Al Memo 452, M.I.T. Artificial Intelligence l.aboratory (Cambridge, Jantary 1978).

[Steele 1978hi
Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Art of the Interpreter or. The

Mfodu larity(miplex(Parts Zero, One. and Two). Al Memo 453. M.I.T. Artificial Intelligence
I.aboratory (Cambridge, May 1978).

[Steele 19791

Steele, Guy L.ewis Jr., and Sussman, Gerald Jay. "Constraints." Al Memo 502. M.IT.
Artificial Intelligence laboratory (Cambrklge, November 1978). Invited paper. Proceedings

API. '79. ACAI SIGPLAN STI/l. API. Quote Quad 9. 4 (June 1979), 208-225.



370 Rtjerences

[Steels 19791
Steels, Luc. The XP1rI Descripion System. Al Working Paper 178. M.I.T. Artificial
Intelligence L aboratory (Camnbridge, January 1979).

[Steels 19801
Steels, L uc. The C'onstraint Alachine (draft). Sclilumbergcr-lDolI Research I -l) (It idgcficld,
Connecticut, May 1980).

[Sussnman 19711

Sussman, Gerald Jay-, Winograd. 'Frry: and Charniak, 1-ugcne. MW1RO-PI .ANAI-R Reference
Manua!. Al Memo 203A. M.I.T. Artificial Intelligence Laboratory (Cambridge, Dcemiber
1971).

JSussani 19721
Sussman, Gerald Jay. and Mcfermott, D~rew Vincent. *'Why Conniving is Better than
Planning." Al Memno 255A. M.I.l'. Artificial Intelligence Laboratory (Cambridge, April
1972). Also appeared as "From III ANNFR to CONNIVIR-A Geneuic Approach." IProc. 1972
Fall Joint Compu ter Con ference. AFIPS Press (Montvale, New Jersey. 1972), 1171-1179.

ISussmnan 19751
Sussman, Gerald Jay. and Stailman, Richard M. Heuristic Techniques in Computer-Aided
Circuit Aijab)sis. AlI Memo 328. M.I.l'. Artificial I ntelligence Laboratory (Cambridge. March
1975). Also in 1FF/' Transactions oni Circuits and Systemns Vol. CAS-22 (11) (November
1975).

[Sussnan 19771
Sussman, Gerald Jay. s1zcu:s: At the ihoundarty between Analysis and Synthesis. Al Memo
433. M.I.T. Artificial Intelligence L~aboratory (Cambridge, July 1977).

[Sutherland 19631
Sutherland, Ivan E. SKvrc1'0IrAD: A Alan-Alachinic Graphical Communiiiication Syistemi. M.I.T.
Lincoln Laboratory Technical Report 296 (Januiary 1963).

lWaltz 19721
Waltz, David L Generating Semantic Descriptions from D~rawings of Scenes with Shadows. Al
TlR-271. M.I.T. Artificial Intelligence Laboratory (Cambridge. November 1972).

[Warren 1977al
Warren, David 11.1. Impienienting riwoo: Compiling I1redicale l.ogic lProgronms Two

volumes. 1).A.I. Research Reports 39 and 40. Decpartment of Artificial Intelligence,
University of Fdinburgh (E'dinburgh, May 1977).

[Warren 1977b1
Warren, David H.l)., and Pereira, Luis. 'TRO,oG: T'he language and Its Implementation
Compared with i msr." Proc. .Syinposiuin on Artifical lItetlligenice and Plrogramnuntitg languages



References 371

(Rochester, New York, August 1977). ACM SIG1PLAN Noices 12, 8, A('AI SIGART
Newsleiier 64 (A ugust 1977), 109-115.

[Weinreb 19791
Weinreb, D)aniel, and Moon, David. Lisp Afaclulne Alanual (Second Preliminary Version).
M.I.T. Artificial Intelligence ILaboratory (Cambridge, January 1979).

[Winston 19741
Winston, Patrick Ilcnry. New Progress in Arliieal Inmelligence. Al 110310. M.I.T. Artificial
Intelligence Laboratory (Cambridge, June 1974).

(Winston 19771
Winston, Patrick Henry. Arificial Inielligence. Addison-Wesley (Reading. MassaChusetts,
1977).



372 References

01234567

89: ;(<=>?
@ABCDEFG

HIJKLMNO

P0 RSTIUVW

XYZ[\]t-

V~~ - -- -N --



I 
I

Alk


